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1. Introduction 

 

Like other branches of philosophy, epistemology faces a methodological challenge: to make 

its procedures more robust, so that errors are more easily corrected. The problem is not any 

general unsoundness in its basic methods, but difficulty in recovering from errors once 

made.  

For example, thought-experimentation is a legitimate and ordinary way of learning 

what would have been in counterfactual possibilities, as I have argued elsewhere 

(Williamson 2007). Nevertheless, it is fallible, just as sense-perception, memory, and 

reasoning are fallible. Although the communal nature of epistemology means that merely 

idiosyncratic mistakes in designing and conducting a thought-experiment tend to be quickly 

recognized, that is not the only possible kind of error. A particular thought-experiment may 

exploit a glitch in human cognitive psychology to which we are all prone. For instance, the 

set-up may prompt us unconsciously to apply a common heuristic in conditions beyond its 

range of reliability. How can we guard against the danger of wrongly dismissing a correct 

theory as refuted because it conflicts with a heuristic in such a case? The answer is not to 

stop using all cognitive faculties which can lead us astray, for that would leave us with 

nothing. We need, not ways of never making mistakes, but ways of recovering from our 

mistakes once made. 

We can do better by using more than one method. When diverse methods lead us to 

the same conclusion, we have a more robust basis for endorsing it. When they lead to 

conflicting conclusions, we have a warning sign that something has gone wrong. Each 

method acts as a potential corrective to the others. For the method of thought-

experimentation, an appropriate corrective is the method of formal model-building—and 

vice versa (Williamson 2017). Thus formal models provide independent confirmation for the 

morals of Gettier thought-experiments (Williamson 2013). 

 The issue of robustness also arises within the model-building approach. Some 

features of a model may result from arbitrary or at least unforced choices; a better model 

may avoid them. We can have more confidence in features which are somehow persistent: 

more specifically, features which provably follow from appropriate general constraints on 

models. This paper exemplifies that approach, applying it to counter-models to the 

controversial ‘KK’ principle that whenever you know p, you also know that you know p. It is 

to be hoped that a similar approach can also be applied to other questions in epistemology.  
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2. The KK principle and model-building 

 

The counter-models to KK are inspired by cases of the following sort. Notoriously, 

perceptual indiscriminability is non-transitive. Imagine a long line of people, arranged in 

height from the tallest to the shortest, standing some distance away. They form a sorites-

like series. For all you can see of any two successive members, they are exactly the same 

height; thus they are visually indiscriminable in height for you (in those circumstances). Yet 

the first and the last members are not visually indiscriminable in height for you: you can 

easily see that the former is much taller than the latter. Thus, on pain of contradiction, for 

some three people A, B, and C in the series, A is visually indiscriminable in height from B, 

and B is visually indiscriminable in height from C, but A is visually discriminable in height 

from C. 

 On the intended interpretation of standard possible world models of epistemic logic, 

a world x is accessible from a world w just in case, for all one knows in w, one is in x—in 

other words, whatever one knows in w is true in x. Thus accessibility is understood as a kind 

of indiscriminability. Since knowledge is factive, whatever one knows in w is true in w, so 

accessibility is reflexive: no world can be discriminated from itself. One counts as knowing a 

proposition in w just in case the proposition is true in every world accessible from w. As is 

well known, the transitivity of accessibility corresponds to the validity of the KK principle.1 A 

natural thought is therefore to use instances of the non-transitivity of perceptual 

indiscriminability to construct natural, somewhat realistic models of epistemic logic which 

falsify the KK principle, because their accessibility relation is non-transitive. The task is not 

trivial, since non-transitive indiscriminability between objects of perception has to be 

leveraged into non-transitive indiscriminability between worlds, without sacrificing too 

much naturalness or realism. Nevertheless, it can be done (Williamson 1992, 2000).  

One bonus of working with indiscriminability is that the counterexamples also work 

against a more defensible weakening of KK which merely requires that whenever you know 

p, you are at least in a position to know that you know p. For indiscriminability is not just 

incompatible with knowing the relevant difference in the relevant way; it is also 

incompatible with being in a position to know the difference in that way.  

 Of course, standard epistemic logic is widely regarded as quite unrealistic. 

Specifically, its models validate an unrestricted principle of multi-premise closure for 

knowledge: whatever truths you know, you also know whatever truths follow from them (in 

the epistemic logic)—with no qualifying condition to the effect that you have carried out the 

deduction, or anything like that. Such logical omniscience seems way beyond the 

computational powers of even the cleverest mortals. One response is to try to gloss ‘know’ 

in some way that automatically validates unrestricted multi-premise closure, though that 

risks changing the meaning of ‘KK’, and leaving the original principle intact. Another 

response is to isolate just the required bits of the model and present them as an informal 

description of an ordinary scenario, without commitment to an unrestricted closure 

principle. A third attitude is just to admit that the model characterizes a drastically idealized 

agent, but to argue that if even such an idealized agent is susceptible to failures of KK, we 
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can hardly hope to do better. Satisfying KK is not a booby prize for those who are bad at 

logic. 

 Recently, there has been some pushback in defence of KK, with its epicentre at MIT 

(Greco 2014, Stalnaker 2015, Das and Salow 2018, Goodman and Salow 2018, Dorst 20XX, 

but also McHugh 2010). Notably, much of this movement has developed within an 

epistemological approach not unsympathetic in spirit to that of the original critique of KK: a 

broadly externalist, reliabilist conception of knowledge, a willingness to treat knowledge on 

its own terms rather than reduce it to some sort of belief with privileges, an openness to 

applying the techniques of formal epistemology. 

 A generic feature of the methodology of formal model-building is that when one 

argues for the possibility of a phenomenon (such as KK failure) on the grounds that simple 

models of some type of situation predict it, someone can counter by building more complex 

models of such situations which do not predict the phenomenon. That has in effect 

happened for KK failure. Of course, if the extra complications look gerrymandered just to 

avoid the prediction, the counter is open to the objection that it is ad hoc, and not 

scientifically respectable: that has to be judged case by case. In any case, it would be nice to 

generalize the original argument for the possibility of the phenomenon, by showing the 

prediction to be robust because it follows from quite general features of the model, which 

should be preserved even as further dimensions of complexity are added: it is no mere 

artefact of the extreme simplicity of the original model. The next three sections do that for 

one type of counter-model to KK. The final section uses that result to reflect on recent 

defences of KK. 

 

 

3. Unmarked clocks 

 

Clock models were originally proposed to argue for a phenomenon much more drastic than 

KK failure: the possibility of knowing p while it is almost certain on one’s own present 

evidence (or knowledge) that one does not know p (Williamson 2011, 2014). The failure of 

KK is in effect a corollary of that phenomenon. However, working with a probability 

distribution requires specifying much more structure over the model, in a way which in this 

case is hard to generalize in an adequately motivated way to the desired extent, especially 

for models with infinitely many worlds. We therefore aim at a more modest target, 

simplifying matters by considering the original model just as a proposed counter-model to 

KK. 

 Imagine looking from some distance at an unmarked circular clock-face with just one 

rotating hand. That is your only source of knowledge of the hand’s position (for example, 3 

o’clock). Your question is where the hand is pointing (what time it is pointing at), not 

whether the clock is accurate. We treat the non-epistemic possibilities as simply positions, 

or points on a circle. By looking, you gain some knowledge of the hand’s position—you can 

rule out some of those possibilities—but you do not gain full knowledge—you cannot rule 

out all of them except the actual one. 

The original model was discrete, with finitely many equally spaced positions for the 

hand to be at, in order to avoid tractable but messy complications with probability 
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distributions over an infinite probability space. For brevity, we simply write ‘positions’ for 

the positions available for the hand to be at. Since we have put probability aside here, 

infinite models raise no special problem. We can have a continuous model, with positions 

on a segment of the circle ordered like the real numbers in a bounded interval, which is 

geometrically more natural. If we want to denote each position with a finite string of 

symbols from a finite alphabet, we can make the set Θ of positions countable, with positions 

on a segment ordered like the rational numbers in a bounded interval. The choice between 

integer-valued, real-valued, and rational-valued positions makes little difference to the 

argument below (though it would need adjustment if we allowed infinitesimal distances). 

Irrespective of that choice, we describe Θ as a circle.  

What matters is that the positions are too close together for the observer to see 

exactly which one the hand is at, and that they are evenly spaced, so that Θ has rotational 

and reflective symmetry, like a circle. Thus for any positions θ1 and θ2, some structure-

preserving mappings of Θ onto itself map θ1 to θ2. The observer’s powers of visual 

discrimination are assumed to show the same symmetries. They are just as good around θ1 

as they are around θ2, and just as good clockwise as anti-clockwise. Whether the observer 

can discriminate θ1 from θ2 depends only on the angle they subtend at the centre of the 

circle. In this simple case, the indiscriminability relation between positions constitutes the 

accessibility relation between worlds, for purposes of epistemic logic. 

Strictly speaking, in the terminology of epistemic and modal logic, this set-up is a 

frame rather than a model, because it specifies a set of worlds and an accessibility relation 

over that set, but no specific propositions to interpret the atomic formulas of a formal 

language for epistemic logic. No such formal language was needed for the purposes at hand. 

To avoid confusion, we respect the distinction between frames and models in what follows. 

A result in section 4 is best articulated with reference to a formal language. 

The original frame is very simple. The worlds are simply the positions themselves. 

The worlds accessible from a given world, in effect the positions indiscriminable from the 

given position, form an interval of constant length centred on the given position. For ease of 

visualization, we may assume that the interval occupies a comparatively small proportion of 

the circle. Start from a position θ1; let θ2 be a position within the interval of 

indiscriminability around θ1 but near its edge going clockwise; let θ3 be a position within the 

interval of indiscriminability around θ2 but near its edge going clockwise. Then θ3 is not 

within the interval of indiscriminability around θ1. In other words, θ2 is accessible from θ1, 

and θ3 is accessible from θ2, but θ3 is not accessible from θ1. Thus accessibility is non-

transitive, so the KK principle fails in the frame. To be more specific, let X be the proposition 

true at just the worlds accessible from θ1; thus X is the strongest truth one knows at θ1—at 

θ1, one knows X, and X entails everything else one knows. Then as an observer in θ1, one 

knows X but does not know that one knows X. 

Although the original frame is very natural, it involves some drastic simplifications, 

on top of those already built into the standard semantic framework for epistemic logic. By 

identifying worlds with positions, it restricts the observer’s ignorance of epistemic matters 

to ignorance induced by ignorance of non-epistemic matters. In the frame, no two epistemic 

possibilities alike in the position of the hand differ in what the observer knows. For example, 

the observer in effect knows the exact length of the interval of indiscriminability, since it is 
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constant from one world to another. By contrast, in real life, observers are typically ignorant 

of some such structural features of their own cognitive powers.   

Another special feature of the original frame is that its accessibility relation is 

symmetric: whenever θ1 is indiscriminable from θ2, θ2 is indiscriminable from θ1. Yet non-

symmetric accessibility relations are needed in epistemology, for example, to model a 

sceptical scenario without letting scepticism infect the corresponding non-sceptical 

scenario. In the bad case, for all one knows one is in the good case, but in the good case one 

knows things incompatible with being in the bad case. 

Thus the worry arises that introducing extra structure into the frame to make it more 

realistic in such respects may somehow disrupt the counterexamples to KK. To counter that 

worry, we need to generalize. We do so by considering all frames which generalize simple 

clock frames in the following way. 

We still have a set of worlds W, but we no longer equate it with the circle Θ. 

However, we can map W onto Θ: for each world w, [w] is the position of the hand in w. As 

usual, propositions are equated with subsets of W. For any position θ, Pθ is the proposition 

that the hand is at θ; in other words, Pθ = {w∈W: [w] = θ}. The frame encodes knowledge in 

the usual way, with a dedicated accessibility relation R. For any proposition X, KX is the 

proposition that (as the observer) one knows X; as usual, KX is true if and only if X is true in 

all accessible worlds, so KX = {w∈W: ∀x(if Rwx, x∈X)}. But R can no longer be defined simply 

by angular distance, since that distance may not determine all the differences between 

worlds. When [w] = [x] but w ≠ x, whether x is accessible from w may depend on epistemic 

differences between w and x, or even on non-epistemic differences, for we allow a frame to 

have additional structure beyond W and R, although W and R are our ultimate concern. We 

do not require R to be symmetric. 

The main structural constraint on the frames is rotational symmetry: we require 

them to look structurally the same when ‘rotated’ through any angle. The frame itself gives 

no structurally privilege to one position over any other. Since the frames are not ordinary 

geometrical objects, we must be more precise about just what is required. We postulate 

that for each rotation r of the circle Θ, there is a corresponding automorphism r* of the 

frame, a structure-preserving bijection of W onto itself, which can be pictured as rotating 

the frame in a manner analogous to that in which r rotates the circle. Crudely, we can think 

of r*(w) as a world just like w but for the rotation of the circle through r. We can state the 

main effect of r* in terms of r thus, for all rotations r: 

 

(1a) [r*(w)] = r([w]) 

 

In other words, the hand’s position in the result of applying the automorphism to a world is 

the result of applying the corresponding rotation to the hand’s position in the original world. 

 For present purposes, rotating clockwise through 90o counts as the same rotation as 

rotating anti-clockwise through 90o, rotating through 360o counts as the same rotation as 

rotating through 0o, and so on, because they have the same effect. Rotations are functions, 

not temporal processes. 

Rotations of the circle induce rotational automorphisms of the frame <W, R> in a 

natural way, so that the rotational automorphisms inherit much—though not all—of the 
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structure of the rotations themselves (section 4 will explain in detail one general way for 

this to happen). In particular, this concerns their algebraic structure. The rotations of the 

circle form a group in the mathematical sense, under the operation of functional 

composition. There is an identity rotation 1 which leaves everything where it was: 1(θ) = θ 

for every position θ. Every rotation r has a two-sided inverse rotation r−1 which cancels out r: 

r−1(r(θ)) = r(r−1(θ)) = θ. Rotations can be composed: applying first r1 and then r2 is equivalent 

to applying the rotation r2r1: r2r1(θ) = r2(r1(θ)). Thus 1r = r1 = r and rr-1 = r-1r = 1. The group of 

rotations of the circle induces a corresponding group of automorphisms of the frame. We 

call such automorphisms r* of the frame rotational automorphisms. The frame may have 

non-rotational automorphisms too, but we are less interested in them. The automorphisms 

of any structure automatically form a group, under composition (which is always associative 

in the mathematical sense), and in this case the rotational automorphisms form a subgroup 

of that group. Its group operations are induced by those of the group of rotations. For any 

rotations r1 and r2, the rotational automorphism (r2r1)* is just the composition of r1* and r2*: 

(r2r1)*(w) = r2*(r1*(w)). Consequently, the rotational automorphism 1* is the identity 

automorphism, for 1*r* = (1r)* = r* for any rotation r. Similarly, r−1* is the two-sided inverse 

of r*, for r−1*r* = (r−1r)* = 1* = (rr−1)* = r*r−1*. 

Since the rotational automorphisms form a subgroup, we can define an equivalence 

relation E over W by setting Ewx just in case r*(w) = x. E is reflexive because the identity is a 

rotational automorphism; it is symmetric because rotational automorphisms are closed 

under inverses; it is transitive because they are closed under composition. Thus E partitions 

W into mutually exclusive, jointly exhaustive subsets, called orbits. Studying epistemic 

phenomena on a fixed orbit will turn out fruitful. 

A distinctive feature of the circle is that for any positions η and θ, exactly one 

rotation r is such that r(η) = θ.  The epistemic frame need not inherit that feature. Typically, 

some worlds differ from each other structurally with respect to R, so that no automorphism 

of the frame maps one to the other. Then W divides into more than one orbit. However, the 

frame does inherit the feature of uniqueness from the circle: at most one rotational 

automorphism maps a world w to a world x. For if r1*(w) = r2*(w) then [r1*(w)] = [r2*(w)], so 

by (1a) r1([w]) = r2([w]), so r1 = r2 by uniqueness for the circle. As a corollary, the * function is 

one-one: whenever r1* = r2*, r1 = r2, so distinct rotations never induce the same rotational 

automorphism. This also means that for any worlds w and x in the same orbit, there is a 

unique rotation r of the circle such that r*(w) = x. We can therefore use the size of the angle 

(in degrees) subtended by positions θ and r(θ) at the centre of the circle (which is 

independent of θ) as a natural numerical measure of the ‘distance’ |w, x| between the 

worlds w and x. Of course, this measure is defined only for worlds in the same orbit. 

These ideas enable us to state a natural monotonicity condition on epistemic 

accessibility, for all worlds w, x, and y: 

 

(1b) If w, x, and y are in the same orbit, and |w, x| ≥ |w, y|, then Rwx only if Rwy 

 

For when the worlds differ only by rotation, and y is at least as close to w as x is, then x is 

indiscriminable from w only if y is indiscriminable from w. In that way, discriminability of 

worlds from a given world increases with distance from that world. 
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A third constraint is this. For any rotation r, since r* is an automorphism, it preserves 

the structure of the frame, and since R is a component of that frame, r* preserves R, in the 

sense that for all worlds w and x: 

 

(1c) Rr*(w)r*(x) if and only if Rwx 

 

In other words, the accessibility relation is invariant under rotational automorphisms: they 

preserve the epistemic structure of the frame. This is just part of what is meant by saying 

that r* is an automorphism of the frame. 

If the frame has more structure on W, beyond R, we should add analogues of (1c) for 

the additional properties, relations, or functions. Again, these invariance principles only 

mean that the frame does not introduce arbitrary deviations from the rotational symmetry 

of the underlying set-up. 

 Crucially, the postulated symmetries are of the frame as a whole, not within each 

world in the frame. The most obvious reason for this is that in each world w the hand is at a 

specific position [w], which breaks the intra-world symmetry between [w] and any other 

position r([w]). Rotational symmetry is inter-world symmetry: in another world r*(w) the 

hand is at r([w]), as in (1a).  

More subtly, a psychological bias may break the intra-world symmetry: for example, 

its effect may be that one is much better at discriminating around 6 o’clock and 12 o’clock 

than around 3 o’clock and 9 o’clock. That is quite consistent with inter-world rotational 

symmetry at the level of the frame, which merely implies that the frame contains some 

other world in which one has a psychological bias whose effect is that one is correspondingly 

better at discriminating around 3 o’clock and 9 o’clock than around 6 o’clock and 12 o’clock. 

 We do not assume that r*(w) is causally the closest world to w in which the position 

of the hand is r([w]). In the case just considered, the psychological bias may be quite deeply 

rooted, and hard to ‘rotate’. Thus if w is the world in which the hand is at 6 o’clock and 

one’s bias favours 6 o’clock and 12 o’clock, causally the closest world in which the hand is at 

9 o’clock may be one in which one’s bias still favours 6 o’clock and 12 o’clock, not one in 

which it has been rotated to favour 3 o’clock and 9 o’clock, whereas the world r*(w) is of 

the latter kind. 

Something is wrong with any view of knowledge which cannot handle such naturally 

symmetric frames. 

 The remaining two constraints are stated with respect to a fixed world z, which we 

informally envisage as a typical instance of the more ‘normal’ or ‘realistic’ worlds in the 

frame, while allowing that the frame may also contain less realistic, more abnormal worlds, 

perhaps as merely epistemic possibilities, or something even more distant than that. Thus 

the constraints on z are not constraints on all worlds in the frame. 

 The fourth constraint just says that the observer in z has non-trivial knowledge about 

the position of the hand. Recall that the negation of a proposition X in the frame is its 

complement in W, W−X; thus K(W−Pθ) is the proposition that the observer knows that the 

hand is not at the position θ: 

 

(1d) For some θ∈Θ, z ∈ K(W−Pθ) 
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In particular, since K is factive, z ∈ W−Pθ, so [z] ≠ θ. By (1d), in z one can rule out some 

candidate positions for the hand; looking at the clock was not a complete waste of time. The 

natural alternative to (1d) would be some form of scepticism about the external world. 

 The final constraint means that in z the observer’s powers of discrimination are not 

perfect over its orbit; some rotation other than the identity 1 is too small to detect:  

 

(1e) For some rotation s ≠ 1, Rzs*(z) 

 

In other words, as the observer in z, one cannot discriminate the world one is in from the 

result of slightly rotating it. By condition (1c), s*(z) is a world with the same epistemic 

structure as z: it differs from z only in ways consequent on a slight difference in the position 

of the hand. This is consistent with there being other worlds in the frame where the hand 

has the same position as in s*(z) but the structure of the observer’s knowledge differs 

markedly from that in z: the observer in z may be able to rule out being in one of the latter 

worlds, but cannot rule out being in s*(z). Notably, (1e) allows the observer’s powers of 

discrimination to be greater in some worlds than in others, but then the former cannot be 

rotated to the latter. For reasons already explained, s*(z) may not be causally the closest 

world to z in which the position of the hand is s([z]); the latter world may be one in which 

some psychological bias in z has not been rotated by the analogue of s. Nevertheless, 

epistemically, for a small enough rotation s, the observer in z cannot discriminate their 

world from one just like it but correspondingly slightly rotated by s*. The natural alternative 

to (1e) would be an implausible kind of omniscience about some aspect of the world, for if 

(1e) fails, the observer in z—as well as being logically omniscient—can in effect discriminate 

their position in the world from an arbitrarily close and structurally exactly similar position, 

differing only in ways correlated with an arbitrarily slight difference in the real and apparent 

positions of the hand. Neither vision nor introspection has so perfect a power of 

discrimination. 

 Given (1a)-(1e), we can prove that R is non-transitive. For let z, θ, and s verify (1d)-

(1e). Then for some small enough rotation r and some natural number n ≥ 1, θ = rn([z]) 

(where rn is n iterations of r) and |z, s*(z)| ≥ |z, r*(z)| (we assume the Archimedean 

property of the standard real numbers: the argument would not work in its present form if 

|z, s*(z)| were infinitesimal). Then Rzr*(z) by (1b). So, for each m < n, by (1c) 

Rr*m(z)r*m(r(z)), i.e. Rr*m(z)r*(m+1)(z)). Suppose that R is transitive. Then Rr*0(z)r*n(z), i.e. 

Rzr*n(z). Thus, by (1d) and the definition of K, r*n(z) ∈ W−Pθ. Hence, by definition of Pθ, 

[r*n(z)] ≠ θ. But [r*n(z)] = rn([z]) by n applications of (1a), and r was chosen such that  θ = 

rn([z]), so [r*n(z)] = θ. This is a contradiction. Thus R is non-transitive. QED. 

 By similar reasoning, without assuming that R is transitive, we can show that n ≥ 1 

and Kn(W−Pθ) is false at z (where Kn is n iterations of K). But K(W−Pθ) is true at z by (1d). 

Thus, for some m ≥ 1, Km(W−Pθ) is true at z while Km+1(W−Pθ) is false at z. In other words, 

K(Km−1(W−Pθ)) is true at z while KK(Km−1−Pθ)) is false at z, so in the frame an instance of the 

KK principle fails at the realistic world z itself, not just at some ‘far-out’ world. 

 The result shows that arguing against KK from the original frame did not crucially 

depend on its very simple structure. A version of the argument goes through for a wide 
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range of much richer and more realistic frames. What it takes is just rotational symmetry 

combined with the idea that, in the envisaged circumstances, perception provides some 

knowledge but not complete knowledge of the hand’s position (on the current orbit). 

Although rotational symmetry is of course a simplification, rejecting it looks like an ad hoc 

move of the most scientifically unproductive kind. 

 

 

4. Combining unmarked clocks with other frames 

  

To see how much the constraints (1a)-(1e) allow, we can construct a wide range of 

epistemic frames satisfying them all. Indeed, this section establishes a more precise result: if 

a formula in a standard language of single-agent epistemic logic is invalid on some reflexive 

frame, it is invalid on some reflexive frame satisfying (1a)-(1e). In that sense, the constraints 

are compatible with a wide range of basic epistemic phenomena. 

 We start by explaining the syntactic and semantic terminology. The standard 

language of single-agent epistemic logic is just the result of adding a monadic sentential 

operator K (for what the agent knows) to a standard language of non-modal propositional 

logic. For definiteness, we take the primitive operators of the latter to be negation (¬) and 

conjunction (&), with other truth-functional operators being treated as metalinguistic 

abbreviations, for example material implication (⊃). A frame for this language is simply an 

ordered pair <W, R>, where W is a nonempty set and R a binary relation over W. Since R is 

informally understood as the accessibility relation for a knowledge operator, which is 

factive, we require R to be reflexive. By itself, a frame does not interpret the language, since 

it does not assign propositions to its formulas, in particular to its atomic formulas. To do 

that, we need an interpretation (or model) over the frame. An interpretation over <W, R> is 

a function I mapping each formula A of the language to a subset I(A) of W (a proposition), 

satisfying three recursive conditions to ensure that it interprets the sentential operators as 

intended:  

 

I(¬A) = W−I(A) 

 

I(A & B) = I(A) ∩ I(B)  

 

I(KA) = KI(A) = {w∈W: ∀x(if Rwx, x∈I(A))} 

 

Here K operates on sentences while K operates on propositions, as defined in section 3. A 

formula A is valid over a frame <W, R> if and only if for every interpretation I over <W, R>, 

I(A) = W; in other words, A is true at every world on every interpretation. Thus <W, R> 

invalidates A if and only if I(A) ≠ W for some interpretation I over <W, R>. 

 The aim is to show that if a formula is invalid on some epistemic frame, it is invalid 

on some epistemic frame satisfying the constraints (1a)-(1e). The first step is to provide a 

way of combining a simple unmarked clock frame <Θ, Δ> with an arbitrary epistemic frame 

<W, R> to make a new epistemic frame <W×Θ, R×Δ>. Informally, a new world in W×Θ is 

simply a world in W together with a position for the clock’s hand. One new world is 
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accessible from another just in case both component worlds of the former are accessible in 

the relevant sense from the respective component worlds of the latter: to discriminate 

between new worlds, the observer must discriminate either between their first components 

or between their second components. About <W, R> we assume only that R is reflexive, as 

above. 

 We first describe the simple clock frame <Θ, Δ> more carefully and check that it 

satisfies (1a)-(1e). For simplicity, we take Θ to be the set of points on a circle in standard 

Euclidean space, though it can easily be adjusted to allow Θ to be countable or finite. Since 

the worlds in Θ are just positions, we set [θ] = θ and r* = r. Thus (1a) holds trivially in <Θ, Δ>. 

We measure the distance |η, θ| between positions η and θ by the relevant angle in degrees; 

thus 0 ≤ |η, θ| ≤ 180. We fix a constant c such that 0 < c < 180 and define the 

indiscriminability relation Δ to hold between η and θ just in case |η, θ| ≤ c. Thus Δ is 

reflexive, holds between some but not all pairs of positions on the circle, and obviously 

satisfies the monotonicity condition (1b). It also satisfies the invariance condition (1c) since 

|r(η), r(θ)| = |η, θ| for any rotation r. Now let z be any position and θ the position 

diametrically opposite z, so |z, θ| = 180, so Δzθ fails (since c < 180). Moreover, Pθ = {θ}, so 

z ∈ K(W−Pθ), so <Θ, Δ> satisfies (1d). Moreover, if s is a rotation through c degrees, s ≠ 1 

(since 0 < c) and |z, s(z)| = c, so Δzs(z), so (1e) holds too. Thus the simple clock frame <Θ, Δ> 

is reflexive and satisfies all the constraints (1a)-(1e). 

 We now construct the new frame <W×Θ, R×Δ>. We define:  

 

W×Θ = {<w, θ>: w ∈ W and θ ∈ Θ}  

 

R×Δ = {<<w1, θ1>, <w2, θ2>>: <w1, w2> ∈ R and <θ1, θ2> ∈ Δ} 

 

Thus the new worlds are just ordered pairs of old worlds and positions on the circle; the 

new accessibility relation just requires the old accessibility relations to hold with respect to 

each component. The function which specifies the hand’s position at one of the new worlds 

is defined simply by setting [<w, θ>] = θ; correspondingly, the proposition Pθ = {<w, θ>: 

w ∈ W}. To rotate new worlds through an angle of θ we merely rotate the component 

representing their position on the circle: 

 

r*(<w, θ>) = <w, r(θ)> 

 

Since any position on the circle can be rotated to any other, the orbit of a world <w, θ> is 

simply {<w, η>: η ∈ Θ}. The distance measure on a given orbit simply follows that on the 

positions: 

 

  |<w, η>, <w, θ>| = |η, θ| 

 

Given these definitions, we can easily check that <W×Θ, R×Δ> satisfies constraints (1a)-(1c), 

because <Θ, Δ> already does. Now let <w, z> be any new world. We first check (1d) for 

<W×Θ, R×Δ>. In checking it for <Θ, Δ>, we already established that Δzθ fails for some 

position θ. Thus (R×Δ)<w, z><x, θ> also fails for any x in W, so W−Pθ is true at any new world 
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to which <w, z> has R×Δ, so K(W−Pθ) is true at <w, z>, as (1d) requires. Now we check (1d) 

for <W×Θ, R×Δ>. In checking it for <Θ, Δ>, we showed Δzs(z) for some rotation s ≠ 1; since R 

is reflexive by hypothesis, (R×Δ)<w, z><w, s(z)>, as (1e) requires. Moreover, since both R 

and Δ are reflexive, so is R×Δ. Thus the new frame <W×Θ, R×Δ> is reflexive and satisfies 

the constraints (1a)-(1e). 

 The next task is to show that if a formula is invalid on <W, R>, it is also invalid on 

<W×Θ, R×Δ>. By contrast, the converse is not generally true. For example, the formula 

Kp ⊃ KKp (where p is an atomic formula), which expresses the KK principle, is invalid on 

<W×Θ, R×Δ>, by what has already been proved. But we can choose R to be a transitive 

relation, making the formula valid on <W, R>. 

 First, we define a ‘translation’ of propositions in <W, R> into propositions in 

<W×Θ, R×Δ>. Informally, the idea is simply that W×Θ divides each way in which a 

proposition in W can be true into many, which differ from each other only in the position of 

the hand. Thus for X ⊆ W, we define tr(X) = {<w, θ>: w ∈ X, θ ∈ Θ}. Hence the truth-value of 

tr(X) remains constant as we vary just the second component of the world in W×Θ. We 

need the ‘translation’ tr to respect the propositional operations expressed in the language, 

corresponding to negation, conjunction, and the knowledge operator K, in this sense, for all 

subsets X and Y of W: 

 

tr(W−X) = (W×Θ)−tr(X) 

 

tr(X ∩ Y) = tr(X) ∩ tr(Y)  

 

tr(KX) = Ktr(X) 

 

In the third equation, note that strictly speaking ‘K’ expresses an operation on subsets of W 

on the left-hand side but an operation on subsets of W×Θ on the right-hand side; in 

practice, context always resolves the ambiguity. The reader is spared the routine checks that 

the three equations hold. 

 Let I be any interpretation of the formal language over the old frame <W, R>. We 

define a corresponding mapping Itr from formulas to subsets of W×Θ by setting Itr(A) = 

tr(I(A)). We check that Itr is an interpretation of the language over the new frame 

<W×Θ, R×Δ>, in other words, it respects the sentential operators over <W×Θ, R×Δ>, given 

that I respects them over <W, R>. That is easy: 

 

Itr(¬A) = tr(I(¬A)) = tr(W−I(A)) = (W×Θ)−tr(I(A)) = (W×Θ)−Itr(A) 

 

Itr(A & B) = tr(I(A & B)) = tr(I(A) ∩ I(B)) = tr(I(A)) ∩ tr(I(B)) = Itr(A) ∩ Itr(B)) 

 

Itr(KA) = tr(I(KA)) = tr(KI(A)) = Ktr(I(A)) = KItr(A) 

 

Thus Itr is an interpretation of the language over <W×Θ, R×Δ>. 

 We can now complete the proof of the desired result. Suppose that an epistemic 

frame <W, R> invalidates a formula A. Thus for some interpretation I over <W, R>, I(A) ≠ W. 
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But for any subset X of W, tr(X) = W×Θ only if X = W. Hence Itr(A) = tr(I(A)) ≠ W×Θ. Since Itr is 

an interpretation over <W×Θ, R×Δ>, that frame invalidates A too. Thus any formula invalid 

on some reflexive frame is invalid on some reflexive frame satisfying the constraints (1a)-

(1e). QED. To put the result in more positive terms: any formula satisfiable on an epistemic 

frame is satisfiable on an epistemic frame satisfying the constraints. 

 The result shows that (1a)-(1e) commit one to no new principles in the propositional 

language beyond those of the most elementary epistemic logic. An example is the symmetry 

of the accessibility relation (as opposed to rotational symmetry!). The accessibility relation 

for the clock frame <Θ, Δ> is symmetric, for |η, θ| = |θ, η|. This corresponds to the validity 

of the formula p ⊃ K¬K¬p on <Θ, Δ>. However, we can still choose a frame <W, R> with R 

non-symmetric, so that p ⊃ K¬K¬p is invalid on <W, R>. Then p ⊃ K¬K¬p is also invalid on 

<W×Θ, R×Δ>. For example, if Rwx holds without Rxw, then (R×Δ)<w, θ><x, θ> holds 

without (R×Δ)<x, θ><w, θ> for any θ in Θ, so R×Δ is non-symmetric too. All invalidities but 

not all validities are preserved from the old frames to the new. Thus the constraints (1a)-

(1e) do not force special rules in this language holding across the simple clock models to be 

treated as general principles about knowledge. 

 Of course, (1a)-(1e) themselves can be formalized in a more expressive language, 

without being completely general principles about knowledge—there may be no such clock. 

If we simply introduce quantifiers into sentence position, modelled as ranging over all sets 

of worlds, we can express the existence (not just possibility) of exceptions to the KK 

principle in the formula ∃p (Kp & ¬KKp). It will be valid in every combined frame 

<W×Θ, R×Δ>, even when R itself is transitive, since at each world <w, θ> a verifying value of 

the variable p is {<x, η>: Rwx, Δθη}, for that assignment automatically makes Kp true at 

<w, θ>, and it makes KKp false at <w, θ>, for the structure of the simple clock model 

guarantees that for some positions η and ζ, Δθη and Δηζ but not Δθζ, so (R×Δ)<w, θ><w, η> 

and (R×Δ)<w, η><w, ζ> (since R is reflexive) but not (R×Δ)<w, θ><w, ζ>, so p is false at 

<w, ζ>, so Kp is false at <w, η>, so KKp is false at <w, θ>. Thus the formula saying that there 

are counterexamples to KK is valid in combined frames. 

 

 

5. Transitive rotation-invariant monotonic relations in clock frames 

 

From section 3, we can extract a more general argument applicable to other relations which 

epistemologists might invoke to understand clock cases. Such relations should be rotation-

invariant, invariant under rotational automorphisms of the frame, in the same sense as R. 

For a binary relation Q over W, this is just the analogue of (1c), for any rotational 

automorphism r* corresponding to a rotation r of the circle, and any worlds w and x: 

 

(2c) Qr*(w)r*(x) if and only if Qwx 

  

Subject to the same glosses as for (1c), it would be arbitrary to single out a relation Q 

violating (2c) for any special theoretical privilege: why prefer Q to its image under rotation 

by r*? 
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 We also restrict consideration to relations which satisfy the same monotonicity 

constraint as R; (2b) is analogous to (1b): 

 

(2b) If w, x, and y are in the same orbit, and |w, x| ≥ |w, y|, then Qwx only if Qwy 

 

Unlike rotation-invariance, monotonicity is not a requirement of non-arbitrariness. Again 

unlike rotation-invariance, monotonicity is also not preserved under negation: (2c) entails 

the result of substituting ¬Q for Q in (2c), but (2b) does not entail the result of substituting 

¬Q for Q in (2b). Instead, (2b) holds when Q is some sort of similarity relation of 

epistemological significance. For if w, x, and y are in the same orbit, and |w, x| ≥ |w, y|, 

then y is at least as similar to w as x is in epistemologically significant respects, since y differs 

from x at most in having been rotated less far from w. 

 We do not assume that Q is the accessibility relation for an operator for some 

familiar epistemic matter such as knowledge or justified belief. Q may be embedded deeper 

inside the workings of an epistemological theory than that. 

 We do assume that the circle of positions is in standard Euclidean space, with no 

infinitesimal distances. 

 How does a transitive, rotation-invariant, monotonic relation behave on a single 

orbit? There are few possibilities. For suppose Qwx, where w and x are distinct worlds in the 

same orbit, so |w, x| > 0. Using rotation-invariance (2c), monotonicity (2b), and an 

argument like that in section 3, we can show that w is joined to any world in its orbit by a 

finite chain of worlds, each of which has Q to the next. Hence, if Q is transitive, w has Q to 

every world in its orbit. Therefore, by rotation-invariance, every world in the orbit has Q to 

every world in the orbit: on this orbit, Q coincides with the universal relation. An alternative 

is that Q never holds between distinct worlds on this orbit. Then if Q holds between some 

world and itself, by rotation-invariance Q holds between every world and itself on the same 

orbit: on this orbit, Q coincides with identity. The only remaining alternative is that Q 

coincides with the empty relation. Thus, on any given orbit, a transitive, rotation-invariant, 

monotonic relation is either universal or empty or identity. Conversely, one can easily check 

that the universal relation, the empty relation, and identity are all transitive, rotation-

invariant, and monotonic. Thus, on a given orbit, there are exactly three possibilities for the 

extension of a transitive, rotation-invariant, monotonic relation. 

 Since Q is supposed to be some sort of similarity relation, it is presumably reflexive. 

That eliminates the possibility of its coinciding with the empty relation on an orbit. 

Consequently, a transitive, rotation-invariant, monotonic similarity relation on a given orbit 

holds either universally or just in case of identity. Only those two extreme possibilities 

remain. That result is relevant to the final section. 

 All three constraints—transitivity, rotation-invariance, and monotonicity—are 

needed to restrict the possibilities so drastically: dropping any one of them opens up many 

more possibilities. We can see this by checking each pair of constraints on any given orbit, as 

follows. 

 

Rotation-invariance and monotonicity without transitivity: For any real number c in the 

open interval (0, 180), define: Qcwx just in case |w, x| < c. Then Qc is rotation-invariant and 
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monotonic but not transitive. Whenever c ≠ d, Qc ≠ Qd, so there are uncountably many such 

relations. 

 

Transitivity and rotation-invariance without monotonicity: For any real number c in the 

open interval (0, 180), define: Qcwx just in case |w, x| = nc for some natural number n. Then 

Qc is transitive and rotation-invariant but not monotonic. Whenever the ratio c/d is 

irrational, Qc ≠ Qd, so there are uncountably many such relations. 

 

Transitivity and monotonicity without rotation-invariance: For any real number c in the 

half-open interval (0, 180] and world w in the given orbit, define: Qc,wxy just in case either 

x = w and |w, y| ≤ c or x = y. Then Qc,w is transitive and monotonic but not rotation-

invariant. Whenever c ≠ d or v ≠ w, Qc,v ≠ Qd,w, so there are uncountably many such 

relations. 

 

If these examples are representative, dropping transitivity yields far more natural results 

than dropping either rotation-invariance or monotonicity. 

 Rotation-invariance is just one example of symmetry in a frame. Symmetry is an 

abstract phenomenon; in itself, it does not exert pressure on epistemology in any particular 

direction. Nevertheless, we have seen, as a constraint it can drastically simplify the options, 

by clearing out a mess of ad hoc alternatives. It would be interesting to find other 

applications of such symmetry constraints in epistemology, or indeed elsewhere in 

philosophy. 

 

 

6. Comparisons 

 

Clock frames make a good test for defences of the KK principle. The present aim is not to 

provide detailed critiques of such defences, but rather to highlight a few key features. 

 One approach to knowledge is to understand it in terms of the flow of information 

(Dretske 1981, Greco 2014: 180-7, Stalnaker 2019: 38-48). Observing the clock puts the 

observer into a state which carries information about the state of the clock, and in particular 

about the position of the hand. Information flows from the clock to the observer when 

conditions are ‘normal’ (Greco) or the ‘channel conditions’ obtain (Stalnaker). We use 

Greco’s more familiar terminology. For a state S of the observer, let Sc be the most specific 

state of the clock such that, necessarily, if the observer is in S and conditions are normal, the 

clock is in Sc. When conditions are normal and the observer is in S, state S carries the 

information that the clock is in Sc. That is supposed to put the observer in a position to know 

that the clock is in Sc, and whatever follows from the clock’s being in Sc. To take advantage 

of the opportunity and actually gain the knowledge, the observer must actually form the 

corresponding belief, in a way suitably dependent on being in S, but the main cognitive 

challenge is seen as already met by the flow of information from the clock to the observer. 

In what follows, for simplicity, knowing and being in a position to know are 

conflated, but distinguishing them will not undermine the main line of argument. The reader 

is at liberty to substitute ‘is in a position to know’ for ‘knows’ in what follows. 



15 
 

How does such an approach support the KK principle? The idea is that when 

conditions are normal and, as observer, one is in state S, that state carries not just the 

information that the clock is in state Sc but also the further information that one knows that 

the clock is in Sc. For, by hypothesis, necessarily, if one is in S and conditions are normal, the 

clock is in Sc. The kind of necessity at issue can legitimately be assumed to be maximally 

broad and so to satisfy the principle that necessities are necessarily necessary; the normality 

condition can still be used to restrict possible worlds to those of current interest. Thus it is 

necessarily necessary that if one is in S and conditions are normal, the clock is in Sc. Hence, a 

fortiori, necessarily, if one is in S and conditions are normal, then necessarily, if one is in S 

and conditions are normal, the clock is in Sc. So if one is in S and conditions are normal, the 

state S carries the information that one knows that the clock is in Sc. Thus one knows that 

one knows that the clock is in Sc. When conditions are abnormal, on the simplest version of 

the view, one knows nothing, so the KK principle holds vacuously. 

A problem for such arguments is that what constitutes normality is itself contingent 

and changeable. In the intended sense, it is now normal for women to vote, but it was not 

normal two centuries ago. Contingency and changeability infect even normal conditions for 

vision: normality in lighting, air clarity, and visual discrimination are contingent and 

changeable too. If the clause ‘conditions are normal’ applies to all worlds (or situations) 

which are normal by their own standards, it will apply far too widely for epistemological 

purposes: the observer’s states will carry too little information, because the intended 

connections break down in worlds utterly unlike our own but normal by their own 

standards. If instead ‘conditions are normal’ applies only to worlds which are normal by our 

standards, it is inappropriate for determining what information a state carries in a world 

where normality differs from actual normality.  

The natural alternative is to treat ‘conditions are normal’ as expressing an 

accessibility relation which a world w has to a world x just in case x is normal by the 

standards of w. We can use the word ‘normally’ to express the necessity operator restricted 

by that accessibility relation. Thus the key move in defence of KK was from ‘Normally, if one 

is in S, the clock is in Sc’ to ‘Normally, if one is in S, then normally, if one is in S, the clock is in 

Sc’. But the inference pattern from ‘Normally, if A, C’ to ‘Normally, if A, then normally, if A, C’ 

is truth-preserving only if the inference pattern from ‘Normally C’ to ‘Normally normally C’ is 

truth-preserving (consider the special case where A is a tautology and so redundant). In 

effect, the argument goes from iteration for normality to iteration for knowledge. But 

iteration is implausible for normality (see Carter 2019 and Loets 2019 for detailed 

discussion). For example, think of a time when it had very recently become normal for 

women to vote. Someone may then have found it refreshing that it was normal for women 

to vote, precisely because it was not yet normal for it to be normal for women to vote. One 

can construct modal analogues of such examples. A similar problem arises for articulating 

the restriction with the sentence ‘Channel conditions obtain’ instead: the deep trouble is 

not interference from the ordinary meaning of the word ‘normal’ but the postulated role of 

the restriction to the favoured worlds in a theory of knowledge. 

For present purposes, the information-carrying account is most easily applied to the 

clock case if the normality or channel conditions are held fixed for the sake of argument. An 

obvious consequence of the account is that when one is in state S, one’s state trivially 
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carries the information that one is in S, so one knows that one is in S, irrespective of how 

specific S. How does this play out in clock frames? 

To implement the normality approach, we can add to the frame both a set N (⊆ W) 

of normal worlds and a function S mapping each world w to the observer’s state S(w) in w. 

In the spirit of clock frames, N will be rotation-invariant: no position of the hand is more 

normal than any other. The same-state relation between worlds (S(w) = S(x)) will also be 

rotation-invariant, since the fineness of one’s discriminations does not vary under rotation. 

It is automatically transitive, and as a similarity relation it is also monotonic. Thus identity of 

one’s state is a transitive, rotation-invariant, monotonic relation between worlds. Therefore, 

on a given orbit, it coincides either with the universal relation or with identity, by what was 

noted in section 5. If it coincides with the universal relation, then one’s state is the same 

irrespective of the hand’s position, so on the information-carrying account one learns 

nothing about the position by looking at the clock. That is just scepticism about the external 

world, not at all what friends of the account want. Consequently, they must go for the only 

alternative: on a given orbit, the same-state relation coincides with identity. Thus, however 

finely the hand’s positions are individuated, one’s states must be equally finely individuated. 

Since each state carries the information that one is in it, however finely the states are 

individuated, one’s state carries the information that one is in exactly that state. What 

makes that more than a trivial definitional matter is the epistemological significance 

accorded it by the information-carrying account.  

Of course, to know that one is in state S, one still has to form the belief that one is in 

S. That is where all the cognitive work needs to be done. But that makes the information-

carrying story something of a sideshow. Imagine a perfectly reliable mechanism which forms 

a perfectly accurate image of the clock-face in one’s brain. Thus one is in a state which 

carries exact information about the position of the hand, but one still faces the task of 

discriminating the position of the hand in the image, of reading the internal clock to answer 

the question ‘What time does it show?’ The theorist can posit a homunculus in the brain 

whose job is to observe the image and come to know the position of the hand in it, but 

there is an obvious threat of a regress. To take a more realistic example, that one’s total 

state trivially carries exact information about one’s blood pressure does not trivialize the 

process of measuring one’s own blood pressure. By itself, the mere internality of one’s 

states has no epistemological significance. 

The proper challenge is to understand human knowledge without helping oneself to 

an unexplained level of perfect self-transparency. Since transparency is usually associated 

with explicit attributions of it to conscious states by internalist epistemologies, it is easily 

overlooked when it is implicitly attributed to physical states by an externalist epistemology, 

but that does not make it more legitimate. 

 The same point emerges when we consider epistemic frames for the information-

carrying account. The relevant aspects of a world w are the exact state O(w) of the observer 

and the specific state C(w) of the clock. The natural information-theoretic definition of the 

accessibility relation is this: Rwx just in case (i) O(w) = O(x) (the observer is in the same 

state) and (ii) if w is normal, so is x. If w is a normal world, C(w) is a determinate of O(w)c 

(the unspecific clock state normally corresponding to the observer state O(w)). For any 

other determinate C of O(w)c, O(x) = O(w) and C(x) = C for some normal world x (so Rwx and 
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Rxw). The proposition that the clock is in O(w)c is just {w: C(w) is a determinate of O(w)c}. 

This set-up has the intended effect that, in a normal world w, one knows that the clock is in 

O(w)c, and knows nothing stronger purely about the clock. Such frames validate self-

transparency in the sense that in any world w, one knows that one is in O(w). 

 KK is valid in such frames, as intended: R is transitive, so all instances of the positive 

introspection principle Kp ⊃ KKp are true at all worlds on all interpretations. Much more 

controversial is the negative introspection principle ¬Kp ⊃ K¬Kp: if you don’t know, you 

know that you don’t know. Negative introspection is invalid in such frames. For let w be a 

normal world and x a world such that O(x) = O(w) but C(x) is not a determinate of O(x)c, so x 

is abnormal. Thus w is accessible from x but x is inaccessible from w. Negative introspection 

fails in x, for one doesn’t know that things are normal (since they are not normal), but one 

also doesn’t know that one doesn’t know that things are normal (since for all one knows one 

is in w, where things are normal). However, all instances of negative introspection are true 

at all normal worlds on all interpretations. For only normal worlds are accessible from 

normal worlds, and on normal worlds accessibility is equivalent to identity of the observer’s 

state, which is an equivalence relation, and therefore validates negative introspection. For 

example, suppose that slightly rotating the normal world w clockwise yields the equally 

normal world y, where C(w) is within the O(w)c region but near its edge going anti-clockwise, 

so C(w) excludes O(y)c, although C(w) and C(y) are determinates of O(w)c and O(y)c 

respectively. Thus in w the clock is not in O(y)c, so one doesn’t know that the clock is in 

O(y)c. Suppose Rwz. Then Rzw because accessibility is symmetric on normal worlds, so in z 

one doesn’t know that the clock is in O(y)c because in the accessible world w the clock is not 

in O(y)c. Thus in no world accessible from w does one know that the clock is in O(y)c, so in w 

one knows that one doesn’t know that the clock is in O(y)c. This is wonderfully fine-grained 

knowledge of one’s epistemic state, for w is very close to y, in which one knows, and so 

knows that one knows, that the clock is in O(y)c. In all normal worlds, one knows exactly 

what one’s knowledge state is. That is an even higher level of self-knowledge than 

satisfaction of KK. 

 The qualified commitment to negative introspection can be reduced by grading 

normality. Thus condition (ii) in the definition of normality, that x is normal if w is, can be 

replaced by the graded condition that x is at least as normal as w. Since the normality 

ordering is transitive, this modification preserves positive introspection, but more normal 

worlds will be accessible from corresponding less normal ones and not vice versa, so non-

maximally normal worlds will fail negative introspection. But negative introspection will still 

hold at maximally normal worlds (for the given condition O(w)). Thus, for all one knows 

even in less normal states, one satisfies negative introspection with respect to all 

propositions. But that is not always so. After all, one can know on the basis of reliable 

testimony that one violates negative introspection (the testifier does not specify with 

respect to which propositions).  

 An alternative to the information-carrying strategy is to emphasize the epistemic 

challenge of extracting knowledge from information-carrying states. But if that is where 

much of the epistemological action takes place, the question is whether one can extract 

knowledge that one knows that P from an information-carrying state from which one can 

extract knowledge that P—which seems depressingly close to the original question. 
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 Das and Salow (2018) focus much more on the final step of forming the belief that 

one knows. Very roughly, they argue that when one knows X, one can use that very 

knowledge as a knowledge-constituting basis for the belief that one knows X (via a quasi-

inferential step from ‘X’ to ‘I know X’), and thereby come to know that one knows X. The 

details of their argument are too intricate to rehearse here. However, one key aspect 

deserves mention. 

 Das and Salow work with the popular framework in which the epistemic status of a 

belief depends on its basis. For example, in determining the reliability of a particular belief, 

the relevant comparison class is beliefs with the same basis. The basis is content-specific, 

not something generic, such as vision. For example, they propose that, on a safety-theoretic 

version of their view, one should gloss ‘safe’ along these lines: ‘an agent’s belief that p, 

formed on basis B, is safe if that agent couldn’t easily have falsely believed that p on that 

basis’ (2018: 10). Clearly, B must be closely tailored to p for that gloss to work properly. As 

they note, the effect of such a gloss is very sensitive to the individuation of bases. Much of 

their discussion concerns the same-basis relation, and its application to beliefs that one 

knows formed by their proposed rule. At least to a first approximation, the relevant 

comparison class for a given belief b0 in a world w0 contains a belief b in a world w if and 

only if the basis of b0 in w0 = the basis of b in w. Thus sameness of basis is an equivalence 

relation between something like belief-world pairs: it is reflexive, symmetric, and transitive. 

Moreover, its grain should be neither maximally fine nor maximally coarse. If it were super-

fine, it would be too kind to bad true beliefs, by excluding nearby false beliefs from their 

comparison classes. If it were super-coarse, it would be too unkind to good true beliefs, by 

including distant false beliefs in their comparison classes. 

 Sameness of basis is a similarity relation in the sense of section 5. Therefore, to 

deserve a starring role in epistemological theory, it should be both monotonic and rotation-

invariant in clock cases. But it is also transitive, as an immediate consequence of its 

definition. Therefore, by the argument of section 5, in a clock case it should coincide on a 

given orbit either with the universal relation or with identity. But the former option is too 

coarse and the latter too fine for the epistemological role of bases. The result of a rotation 

through 1o should be in the relevant comparison class; the result of a rotation through 180o 

should not be. But rotation-invariance and transitivity together are incompatible with that 

combination. 

 The natural solution is to move from identity to similarity in how the belief is 

formed. Such similarity is non-transitive. Oddly, when Das and Salow motivate the role of 

bases in epistemological theory, they write in terms of graded similarity. For example, in the 

sentence preceding the one quoted above, they mention ‘a false belief formed on a very 

different basis’ (their emphasis); ‘very’ is relevant only to a graded similarity relation. In a 

footnote to the latter sentence, they mention Keith DeRose’s requirement ‘that possibilities 

resemble the actual world in a particular way to count as ones that “could easily have 

happened” in the relevant sense’. They add: ‘We’re inclined to think that talk of bases is 

mostly a way of putting a label on the resemblance in question’ (2018: 20n18). Again, they 

say ‘the basis of pre-theoretically similar beliefs should be individuated similarly’ (2018: 11); 

why expect pre-theoretic similarity to be transitive? Those informal motivating remarks do 

nothing to favour a transitive similarity relation over a non-transitive one. But they are used 
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to motivate official formulations in their arguments that turn on identity of basis. For 

example, in surveying the main theoretical options for individuating the basis of a belief 

formed by following a rule, they consider only standards for identity of basis (2018: 15). In 

effect, transitivity has slipped in between the motivation and what it is supposed to 

motivate. Given the close connection between transitivity and the KK principle, that is no 

small lacuna in an argument for the latter. 

 How might reformulating the issues in terms of non-transitive basic similarity rather 

than identity of basis affect Das and Salow’s arguments? Their proposal is that if one knows 

X, one can use knowing X as a basis on which to believe that one knows X; since a belief on 

that basis that one knows X is guaranteed true, one thereby knows that one knows X. What 

is that proposal analogous to in terms of non-transitive basic similarity? 

 The key epistemological role of the basis of a belief is to define a comparison class of 

other (possible) beliefs with which to assess the original belief. Substituting basic similarity 

for identity of basis does not obviate the need for a comparison class. For simplicity, we may 

treat the comparison class as a class of worlds rather than beliefs, and hold the content of 

the belief fixed, as in standard epistemic logic. Nothing crucial in the argument will depend 

on that simplification.  

 One can define a transitive similarity relation R+ in terms of a non-transitive similarity 

relation R by stipulation: R+wx if and only if for all z, Rwz just in case Rxz. However, R+ is 

typically too restrictive to demarcate a useful comparison class. In the clock case, if R holds 

between positions on the circle just in case the angular distance between them is no (0 < n < 

180o), R+ is simply identity: the only comparison is self-comparison. 

 Instead, the natural proposal is simply that the comparison class for a world is simply 

the class of basically similar worlds, so that basic similarity plays the role of a non-transitive 

accessibility relation in standard epistemic logic. Then one may know X in a world w because 

X is true in every world in the comparison class for w. But, even though the comparison class 

is held constant, it by no means follows that one knows X in every world in the comparison 

class for w, since the comparison class for a world x in the comparison class for w may 

include a world y not in the comparison class for w (that is just to restate non-transitivity). 

Thus, without transitivity, there is no proper analogue of the idea that whenever one knows, 

one’s knowing is available as a basis for belief. Such talk is not a harmless rephrasing of talk 

about basic similarity; it is a Trojan horse for transitivity, and so for the KK principle. 

 As these reflections show, the model-building approach facilitates the identification 

of key structural problems for epistemological theories. That is best done by focus not on 

particular models, but on broad classes of model, defined by structural constraints. One 

important type of structural constraint is invariance under a given group of symmetries of 

the epistemic frame, which helps eliminate clutter and ad hoc fixes. By using these and 

other structural constraints, we can make the results of the model-building approach more 

robust.2  
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Notes 

 

 

1 Proof: (i) When accessibility is transitive: Suppose that one knows a proposition 

(set of worlds) X in a world w. Let x be any world accessible from w, and y any 

world accessible from x. By transitivity, y is accessible from w, so X is true in y. 

Thus X is true in any world accessible from x, so in x one knows X. Thus one 

knows X in any world accessible from w, so in w one knows that one knows X. 

Thus in any world in which one knows X, one knows that one knows X. (ii) When 

accessibility is not transitive: Let w, x, and y be worlds such that x is accessible 

from w, y is accessible from x, but y is not accessible from w. Let X be the 

proposition true in all and only the worlds accessible from w. Thus in w one 

knows X. Since y is not accessible from w, X is false in y. Since y is accessible from 

x, in x one does not know X. Since x is accessible from w, in w one does not know 

that one knows X. Thus the KK principle fails at w.  

 

2 Versions of this paper were presented to the 2019 Analytic Philosophy 

Symposium at the University of Texas, Austin, and the 2020 Workshop on Luck, 

Risk, and Competence at the University of Seville. I thank the audiences for 

helpful discussion, and Sam Carter, Kevin Dorst, and Bernhard Salow for detailed 

written comments. 

 

  

    

  



21 
 

References 

 

Carter, Sam. 2019: ‘Higher order ignorance inside the margins’, Philosophical Studies, 176: 

  1789-1806. 

Das, Nilanjan, and Salow, Bernhard. 2018: ‘Transparency and the KK principle’, Noûs, 52: 3 

-23. 

Dorst, Kevin. 20XX: ‘Abominable KK failures’, Mind, forthcoming. 

Dretske, Fred. 1981: Knowledge and the Flow of Information. Cambridge, MA: MIT Press. 

Goodman, Jeremy, and Salow, Bernhard. 2018: ‘Taking a chance on KK’, Philosophical 

  Studies, 175: 183-196. 

Greco, Daniel. 2014: ‘Could KK be OK?’, The Journal of Philosophy, 111: 169-197. 

Loets, Annina. 2019: ‘Choice points for a theory of normality’, MS. 

McHugh, Conor. 2010: ‘Self-knowledge and the KK principle’, Synthese, 173: 231-257. 

Stalnaker, Robert. 2015: ‘Luminosity and the KK Thesis’, in Sanford Goldberg (ed.), 

Externalism, Self-knowledge, and Scepticism: 17-40. Cambridge: Cambridge 

University Press. Reprinted in Stalnaker 2019. 

Stalnaker, Robert. 2019: Knowledge and Conditionals: Essays on the Structure of Inquiry. 

 Oxford: Oxford University Press. 

Williamson, Timothy. 1992: ‘Inexact knowledge’, Mind, 101: 217-241. 

Williamson, Timothy. 2000: Knowledge and its Limits. Oxford: Oxford University Press. 

Williamson, Timothy. 2007: The Philosophy of Philosophy. Oxford: Blackwell. 

Williamson, Timothy. 2011: ‘Improbable knowing’, in Trent Dougherty (ed.), Evidentialism 

  and its Discontents: 147-164. Oxford: Oxford University Press. 

Williamson, Timothy. 2013: ‘Gettier cases in epistemic logic’, Inquiry, 56: 1-14. 
Williamson, Timothy. 2014: ‘Very improbable knowing’, Erkenntnis, 79: 971-999. 
Williamson, Timothy. 2017: ‘Model-building in philosophy’, in Russell Blackford and Damien 

Broderick (eds.), Philosophy’s Future: The Problem of Philosophical Progress: 159-
173. Oxford: Blackwell-Wiley. 


