
Probability and Philosophy
A.C. Paseau
Trinity 2025

Lecture 1, Wednesday 30 April 2025



Lectures

1. Introduction to Probability Theory

2. Dutch Book Arguments

3. Dutch Book Arguments Assessed and Empirical Matters

4. Miscellanea

5. Bayesianism

6. Bayesianism and the Problem of Induction

Location: Lecture Room, Radcliffe Humanities (2nd floor)

Time: 9.30 to 11 am on Wednesdays, weeks 1–4 and 7-8 of
Trinity Term. NB no lectures in weeks 5–6.



Papers

▶ This is a set of six 1.5-hour undergraduate lectures on
probability from a philosophical perspective.

▶ Our main topic beyond the first lecture will be credences or
degrees of belief.

▶ The topic is on the syllabus of the following undergraduate
papers:
▶ Philosophy of Science (FHS)
▶ Philosophy of Science and Social Science (FHS)
▶ Philosophical Topics in Logic and Probability (FPE).

▶ It is also very relevant to any papers on metaphysics and
epistemology.

▶ All other students (BPhil, MSt, DPhil, visiting, etc.) very
welcome.



Set-up I

▶ We normally wish to assign probabilities to possible outcomes
of some process. For example, a coin toss or a throw of the
dice. More generally: to any way the world might be.

▶ Call the things to which we wish to assign probability events.
We can think of events as collections of outcomes, which are
maximally specific as far as the modelling situation goes.

▶ Example: when rolling a die, the relevant outcomes might be
that the die lands on 1, 2, 3, 4, 5 or 6. (We don’t care about
e.g. the manifold ways it might land on a 6.) The following
outcomes are all events: {1}, {2}, {3}, {4}, {5} or {6}. As are
the following: {1, 3} (throwing a 1 or a 3), or {1, 2, 3, 4, 5, 6}
(the trivial event), or by courtesy the impossible event ∅.



Set-up II

▶ The set of outcomes (recall that sets of these make up
events) is known as the sample space and is usually denoted
Ω. It is assumed to be non-empty.

▶ Each event is a subset of Ω.

▶ The set of events is assumed to have a certain set-theoretic
structure: it contains Ω (the trivial event); it is closed under
complementation (it contains the ‘negation’ of any event);
and if E1,E2, . . . ,En, . . . are events so is the event that is
their ‘disjunction’.

▶ In other words, the set of events Σ is a σ-algebra, that is:
▶ Ω ∈ Σ
▶ If E ∈ Σ then Ω \ E ∈ Σ

▶ If E1,E2, . . . ,En, · · · ∈ Σ then
∞⋃
i=1

Ei ∈ Σ.

▶ The ordered pair ⟨Ω,Σ⟩ is known as a measurable or Borel
space.



σ-algebras I

▶ If Ω is non-empty then ⟨Ω,P(Ω)⟩, where P(Ω) is the power
set of Ω (i.e. the set of all its subsets), is a measurable space.

▶ If Ω is non-empty then ⟨Ω, {Ω, ∅}⟩ is a measurable space, i.e.
{Ω, ∅} is a σ-algebra over Ω.

▶ Suppose Ω = {1, 2, 3, 4}. Let Σ be the set whose four
members are:

∅, {1, 2}, {3, 4}, {1, 2, 3, 4}
Then Σ is a σ-algebra over Ω. Incidentally, this shows that
the singleton of an outcome need not be an event, i.e. ω ∈ Ω
does not imply that {ω} ∈ Σ.



Finite, Countable and Uncountable

▶ It is important for this course to be clear on what all these
terms mean. We define them informally.

▶ A finite set is of size n for n a natural number. So it is either
empty or the same size as the set {0, 1, . . . n − 1}.

▶ A countably infinite set is the same size as N = {0, 1, . . . },
the set of natural numbers. The set of rational numbers Q is
another example of a countably infinite set.

▶ A countable set is either finite or countably infinite.

▶ An uncountable set is larger than the set of natural numbers.
Examples of uncountable sets include R or [0, 1], the set of
real numbers between 0 and 1 inclusive.

▶ We won’t need this fact in this course, but in case you don’t
know it: two sets are of the same size just when there is a
one-to-one and onto function from one to the other. A
one-to-one and onto function is also known as a bijection.



σ-algebras II

▶ If Σ is a σ-algebra then it is closed under countable

intersection: if E1,E2, . . . ,En, · · · ∈ Σ then
∞⋂
i=1

Ei ∈ Σ. It is

also closed under relative complement: if E1,E2 ∈ Σ then
E1 \ E2 ∈ Σ.

▶ Let R be the set of real numbers. Let B be the Borel subsets
of R, i.e. the smallest set of subsets containing all the
intervals of the form (a, b), where a < b are both real
numbers, and closed under complementation and countable
union.

▶ Exercises: show that B is a σ-algebra over R; and show that
B contains all finite and countably infinite subsets of R.

▶ The argument at the end of this lecture will imply that there
are subsets of the real numbers that are not Borel, i.e.
B ̸= P(R).



Probability/Kolmogorov Axioms

▶ Suppose ⟨Ω,Σ⟩ is a measurable space. As usual, R is the set
of real numbers. A probability function p is a map from Σ to
R such that:
▶ Non-Negativity: for any E , p(E ) ≥ 0.

The probability of any event is non-negative.
▶ Normalisation: p(Ω) = 1.

The probability of the sample space/trivial event is 1.
▶ Countable Additivity: For any E1,E2, . . . ,En, · · · ∈ Σ: if

Ei ∩ Ej = ∅ for all i ̸= j then p(
∞⋃
i=1

Ei ) =
∞∑
i=1

p(Ei ).

The probability of the countable union of any countable
sequence of pairwise disjoint sets is the sum of their respective
probabilities.

▶ We then say that ⟨Ω,Σ, p⟩ is a probability space.



Ratio Formula I

▶ What is the probability that a fair die will land on a multiple
of 6 given that it lands on a multiple of 3?

▶ The two events we need to consider are that of landing on a
multiple of 6, i.e. the event {6}, and that of landing on a
multiple of 3, i.e. the event {3, 6}.

▶ Using the symbol ‘|’, we write this conditional probability as
p({6}|{3, 6}).

▶ Note that a conditional probability is assigned to a pair of
events, not a single event. The second event is supposed to
have occurred and the probability of the first event is
evaluated on that supposition.

▶ In this example, the conditional probability is readily seen to
be 1

2 .



Ratio Formula II

More generally, we need to consider the conditional probability
of A given B, which we write as p(A|B). The picture is that
we restrict attention to the B-part of the Venn diagram
(which represents the sample space).

B A

We then consider the proportion of this region that
corresponds to the event A.



Ratio Formula III

▶ This yields the following formula:

p(A|B) = p(A ∩ B)

p(B)
, if p(B) ̸= 0

.

▶ NB Mathematicians often treat this formula as a definition of
conditional probability. We won’t do so here. We take the
ratio formula to be not a definition but a constraint on
probabilities that may or may not be violated. This will
become particularly clear when we think of probabilities as
credences.

▶ The ratio formula can be considered a supplementary axiom
to the Kolmogorov ones listed earlier.

▶ As an aside, note that the ratio formula leaves it open what
p(A|B) is when p(B) is 0.



Version with Finite Additivity
▶ A small number of probability theorists have held that the

additivity condition should take a finite rather than countably
infinite form. An example is Bruno de Finetti (1906–1985). In
many applications of probability theory, especially elementary
ones, the finite form is the only one required. We present it
here and return to question of Finite vs Countable Additivity
in a later lecture.

▶ Suppose F is an algebra over the sample space Ω, i.e.
satisfies the following three conditions:
▶ Ω ∈ F .
▶ If E ∈ F then Ω \ E ∈ F .

▶ If E1,E2, . . . ,En ∈ F (where n is finite) then
n⋃

i=1

Ei ∈ F .

A probability function p is a map from F to R such that:
▶ Non-Negativity: p(E ) ≥ 0.
▶ Normalisation: p(Ω) = 1.
▶ Finite Additivity: For any E1,E2, . . . ,En ∈ F : if Ei ∩ Ej = ∅

for all i ̸= j then p(
n⋃

i=1

Ei ) =
n∑

i=1

p(Ei ).



(Mere) Algebra vs Σ-Algebra I

▶ All σ-algebras are algebras.

▶ And Finite Additivity follows from Countable Additivity and
Normalisation.

▶ We could simply modify Countable Additivity to take in the
finite case too, and rebrand it Countable-or-Finite Additivity.

▶ Or observe that setting E1 = Ω and E2,E3, . . . ,En, · · · = ∅
and using Normalisation and Countable Addivity yields
p(∅) = 0.

▶ So now set En+1 = En+2 = · · · = ∅ in Countable Additivity to
derive Finite Additivity.



(Mere) Algebra vs Σ-Algebra II

▶ All σ-algebras are algebras, but not all algebras are σ-algebras.

▶ Suppose Ω is a countably infinite set, e.g. the set of natural
numbers.

▶ Let F be the set of finite subsets of Ω. Let CF be the set of
cofinite subsets of Ω, i.e. the set of all sets whose
complement in Ω is finite.

▶ Then F ∪ CF is not a σ-algebra over Ω, as it does not satisfy
the condition of countably infinite closure.

▶ However, F ∪ CF is an algebra over Ω because it satisfies the
condition of finite closure.



Four Interpretations of Probability 1

▶ Count: relative frequency, i.e. the ratio of some events of a
certain kind relative to a broader class of events.

▶ Credence: the strength or degree of someone’s belief. This is
an epistemic notion, and the one we will focus on in later
lectures.

▶ Chance: a mind-independent feature of the natural world, e.g.
the half-life of some radioactive material.

▶ Confirmation: the degree to which one proposition confirms or
supports another. This is also known as the logical
interpretation.

▶ No commitment is made to all of these being
primitive/irreducible, nor conversely to there being no other
types of probability.

1Here I follow Adam Caulton’s classification and terminology in his PTLP
notes, for in-house consistency.



A Brief History of Probability I

▶ The mathematical theory of probability is standardly taken to
begin in 1654. This is the year Pascal and Fermat began a
correspondence analysing some gambling problems. Inspired
by this work, Huygens published a treatise on probability in
1657.

▶ Precursors include Cardano (1501–76), whose c. 1564
handbook for gamblers was only published in 1663, as well as
Galileo (1564–1642).

▶ Jakob Bernoulli’s 1713 Ars Conjectandi was a landmark. In it,
Bernoulli proved the first limit theorem, which today would be
seen as a special case of the law of large numbers.

▶ Laplace’s Philosophical Essay on Probabilities of 1814 was
particularly influential. Hacking (2001, p. 45) calls it ‘the first
introductory college textbook about probability’.

▶ The probability axioms in more or less their above form are
owed to Kolmogorov in 1933.



A Brief History of Probability II

▶ It’s interesting to speculate why probability arose so late in
the day, comparatively speaking. For example, why did the
ancient Greeks, who were such skilled mathematicians, not
develop probability theory?

▶ We can extract three reasons from the discussion in Gillies
(2000, pp. 22–23). The first is that Greek mathematical
expertise lay mainly in geometry. Yet probability theory
requires arithmetic and algebra.

▶ The second is that Greek notation prevented them from doing
so. It’s true that the early 17th century was a watershed
moment in the development of mathematical notation. It’s
not clear, however, how notation-heavy probability theory is
compared to other branches of mathematics.

▶ The third is that gambling in the ancient world was carried
out not with regular dice but with irregular astragali (= small
bones in the heels of sheep or deer).



The Classical Theory I

▶ Laplace’s 1814 text established the so-called classical theory
of probability as the canonical one. It reigned supreme for
more than 100 years.

▶ Laplace believed that the world was deterministic, so for him
probabilities were epistemic. He defined them as follows:

The theory of chance consists in reducing all the events of
the same kind to a certain number of cases equally possi-
ble, that is to say, to such as we may be equally undecided
about in regard to their existence, and in determining the
number of cases favourable to the event whose probabil-
ity is sought. The ratio of this number to that of all the
cases possible is the measure of this probability, which is
thus simply a fraction whose numerator is the number of
favourable cases and whose denominator is the number of
all the cases possible. (Laplace 1814, pp. 6–7; Truscott &
Emory transl.).



The Classical Theory II

J.M Keynes (1883–1946) called the principle the classical theory is
based on The Principle of Indifference. (Jakob Bernoulli had called
it the Principle of Non-Sufficient Reason.)

The principle of indifference asserts that if there is no
known reason for predicating of our subject one rather
than another of several alternatives, then relatively to such
knowledge the assertions of each of these alternatives have
an equal probability. Thus equal probabilities must be as-
signed to each of several arguments, if there is an absence
of positive ground for assigning unequal ones. (Keynes
1921, p. 45)



The Classical Theory III

▶ We have a mixture a water and wine. All we know is that
there is at most 3 times more of one than the other.

▶ By the Principle of Indifference, the ratio of wine to water has
a uniform probability density in the interval [13 , 3].

▶ Ditto for the ratio of water to wine.

▶ Pr(wine : water ≤ 2) =
2− 1

3

3− 1
3

=
5
3
8
3

= 5
8

▶ Pr(water : wine ≥ 1
2) =

3− 1
2

3− 1
3

=
5
2
8
3

= 15
16

▶ Yet these are the same event, just described differently.

▶ Applying the Principle of Indifference to the event described
one way gives a different result to applying to the same event
described another way.



The Classical Theory IV

▶ As we have seen, one of the main problems with the classical
theory is that the probabilities depend on how we carve up the
problem.

▶ Another example: you might argue that the probability of a
coin landing heads nine times in nine tosses is 1

10 (since the
possible outcomes are 0, 1, 2, 3, 4, 6, 7, 8, or 9). Or if you
consider each coin toss individually, you might argue that it is
(12)

9.

▶ Also, how does the classical theory deal with a biased coin or
die? It seems incapable of doing so.

▶ It also seems incapable of handling scenarios in which there are
infinitely many outcomes, since we cannot divide by infinity.

▶ For these sorts of reasons, the classical theory has been
abandoned.



A Limitative Result I

▶ We now present a limitative result.

▶ What it shows is that some events that you might think could
be assigned a probability cannot be.

▶ The question is whether this damages the mathematical
theory as a good applied model of probabilistic phenomena.



A Limitative Result II

▶ Consider the measurable space ⟨[0, 1],P([0, 1])⟩. Is it possible
to define a ‘natural’ probability function on this space?

▶ What is a natural probability function?

▶ If a, b ∈ [0, 1] with a < b, then the probability of (a, b) should
be equal to b − a.

▶ And the translation of any set of points ‘modulo the integers’
should have the same probability as the original set of points.

▶ This second condition implies that e.g. if we think of [0, 1) as
a circle then the rotation of any set of points should have the
same probability as the original set of points.

▶ Call such a probability function natural.

▶ The answer to the question is negative. Using the Axiom of
Choice (one of the principles of standard set theory), one can
prove that there is no natural probability function p.



A Limitative Result III
▶ There are subsets of [0, 1), and therefore of [0, 1], that cannot

be assigned a probability. Proof idea: think of [0, 1) as a circle
and partition the points on it into equivalence classes.

▶ Points are in the same equivalence class iff the arc determined
by them is a rational fraction of the circumference. Figure
showing a few members of an equivalence class from Isaacs et
al. (2022):

Picture1.jpg

▶ Pick one point from each such equivalence class and call the
resulting set S0. Any rotation of S0 by a rational value
0 < q < 1 will lead to a disjoint set Sq.



A Limitative Result IV

S0 Sq. . . . . .

▶ The Venn diagram contains
all the points in [0, 1). The
horizontal strips are the
Sq = {x + q : x ∈ S0}, i.e.
Sq is S0 shifted by q, for
rational q such that
0 ≤ q < 1.

▶ Each Sq is uncountable.

▶ There’s a countable infinity
of sets Sq, one for each
rational q such that
0 ≤ q < 1.

Countable Additivity now implies a contradiction. Either p(Sq) = 0
for all rational q or p(Sq) > 0 for all rational q. In the first case,
the unit circle has probability 0. In the second case, its probability
is undefined (infinite).



A Limitative Result V

▶ History behind this: the Italian mathematician Giuseppe Vitali
showed how to construct non-measurable sets, i.e. subsets of
[0, 1] (or R, R2, etc.) that cannot be measured. A measure is
like a probability function except that normalisation may be
waived and the measure must be natural in the above sense or
its analogue in higher dimensions.

▶ Summary: if ⟨[0, 1],Σ, p⟩ is a probability space, where p is a
natural probability function in the specified sense then the
σ-algebra Σ must be a proper subset of P[0, 1].



A Limitative Result VI

▶ You might take this to be bad news for the mathematical
account of probability described on earlier slides, assuming it
is construed as modelling what we would intuitively call
probabilistic situations. (As a mathematical theory per se,
forgetting about applications, it is of course impeccable.)

▶ The argument might be: we should be able to assign
probability to every subset of [0, 1] in such a way that all
intervals have probability their length and probabilities are not
affected by rotations (thinking of the unit interval as the unit
circle).

▶ This could be reinforced by the following thought experiment:
suppose you throw a dart repeatedly at the unit interval [0, 1].
The frequency with which the dart lands on the subinterval
(a, b), where a < b, tends to b − a and should be
translationally symmetric (modulo the integers). Given a
subset X of [0, 1], surely the frequency with which the dart
hits an element of X tends to some number.



A Limitative Result VII

▶ My suggestion is that fans of probability theory should bite
the bullet. There is no probability to speak of here.

▶ It’s not as if this response could be disproved empirically, since
we could not build a real-numbered circle/interval in the
physical world and measure where a dart lands on it with
sufficient precision to establish within reasonable doubt that a
limit does exist.

▶ Compare this limitative result with the Banach-Tarski
Paradox.



A Limitative Result VIII: The Banach-Tarski Paradox

▶ Take a ball B with radius r in R3.

r

▶ B can be decomposed into a finite number of disjoint subsets
that can be put back together to form two solid balls B1 and
B2, each of which is of radius r , i.e. is the same size as the
original ball B.

r r



A Limitative Result IX

▶ The usual response to the Banach-Tarski Paradox is that our
geometric and physical intuitions are shaped by the physical
world. In this world, we have never encountered
non-measurable shapes or figures. Our intuitions about
them—according to which a single ball cannot be decomposed
and reassembled into two identical ones when the pieces
involved are non-measurable—are not reliable.

▶ A similar response can be given to the first limitative result.
Our intuitions about the frequency of a dart hitting a target
are shaped by experiences in the physical world—a world in
which we have never encountered a real interval or
non-measurable segments. Consequently, we should not rely
on intuitions that suggest a dart will land in a non-measurable
subset of the real line with a well-defined frequency, and thus
a well-defined probability.
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Y. Isaacs, A. Hájek & J. Hawthorne (2022),
‘Non-Measurability, Imprecise Credences, and Imprecise
Chances’, Mind 131, pp. 894–918.

J.M. Keynes (1921/1978), A Treatise on Probability, Vol. 8
of The Collected Writings of John Maynard Keynes, Royal
Economic Society.

P-S Laplace (1814/1951), A Philosophical Essay on
Probabilities, Dover.



Probability and Philosophy
A.C. Paseau
Trinity 2025

Lecture 2, Wednesday 7 May 2025



Lectures

1. Introduction to Probability Theory

2. Dutch Book Arguments

3. Dutch Book Arguments Assessed and Empirical Matters

4. Miscellanea

5. Bayesianism

6. Bayesianism and the Problem of Induction

Location: Lecture Room, Radcliffe Humanities (2nd floor)

Time: 9.30 to 11 am on Wednesdays, weeks 1–4 and 7-8 of
Trinity Term. NB no lectures in weeks 5–6.



Recap

▶ Recall the properties of a probability function. It is a map
from a σ-algebra over a set of outcomes to the set of real
numbers. And it is non-negative; normalised; and countably
additive.

▶ More precisely, ⟨Ω,Σ, p⟩ is a probability space just when Σ is
a σ-algebra over Ω and p is a map from Σ to R with the
following properties.
▶ Non-Negativity: for any E in Σ, p(E ) ≥ 0.
▶ Normalisation: p(Ω) = 1.
▶ Countable Additivity: For any E1,E2, . . . ,En, · · · ∈ Σ: if

Ei ∩ Ej = ∅ for all i ̸= j then p(
∞⋃
i=1

Ei ) =
∞∑
i=1

p(Ei ).



Credences

▶ One way to interpret the probability calculus is in terms of
credences or degrees of belief of an agent.

▶ Probabilism is the thesis that (i) an agent’s beliefs come in
degrees—these are what we call credences; (ii) credences are
rationally required to obey the probability axioms.

▶ How do we measure a person’s credences? A question asked
in Ramsey (1926). Ramsey observes that
▶ We lack what he calls a ‘psychogalvanometer’, i.e. a

measuring device we could attach to or insert in a subject’s
brain to read off their credences.

▶ Strength of feeling is not a good guide to credence (cf. my
credence that Lima is the capital of Peru).

▶ However, credences do play a role in guiding our actions and
help us make good decisions. This gives us a way in.



Expected Utility I

▶ A rational agent is assumed to have a utility function, which
quantifies how valuable they find something. A constraint on
such a function UA is that UA(x) > UA(y) iff the agent A
prefers x to y . (The agent subscript will from now on usually
be implicit.) If the agent’s preferences satisfy certain fairly
natural assumptions, a utility function can simply be thought
of as a way of encoding their preferences.

▶ Agents are also assumed to have credences defined over all
possible combinations of acts and outcome states. We
represent the former as a and the latter as s.



Expected Utility II

▶ The expected utility of a possible act a is defined as follows:

EU(a) =
∑
s∈S

U(s|a)cr(s|a)

where U(s|a) is the utility of the state s obtaining given that
the agent takes action a and cr(s|a) is the agent’s credence
that s will obtain given that they take action a. S here is the
set of all possible states. If the utility of s is independent of
which action the agent takes, we may write U(s).

▶ The Expected Utility Hypothesis says that a subject should
perform the act with the greatest expected utility (for them).



Representing a Rational Action

▶ We use decision tables to represent decision problems. Rows
correspond to possible acts and columns to possible states.
Entries represent the agent’s utilities.

state 1 state 2

act 1 10 20
act 2 20 10

▶ In this example, the subject is better off performing act 1 if
the word is in state 2, and better off performing act 2 if the
world is in state 1.



Credences and Betting Quotients: the Informal Idea I

▶ Suppose your credence in E is c(E ).

▶ Consider a bet that pays you £100 if E is true and £0 if E is
false. We assume throughout that you prefer more money to
less.

▶ You are offered this bet for X pounds.

▶ It seems that if X < 100c(E ), you should accept the bet.

▶ If X = 100c(E ), it seems you may rationally either take the
bet or refuse it.

▶ And if X > 100c(E ), it seems you should refuse it.

▶ Similarly but the other way around if you are the one offering
the bet: offer it for X pounds if X > 100c(E ); if
X = 100c(E ), you should be indifferent between offering and
not; do not offer it for X pounds if X < 100c(E ).



Credences and Betting Quotients: the Informal Idea II

▶ The idea is that the more confident you are in an event
occurring, the more you should be prepared to pay for a bet
on it.

▶ If you’re sure it won’t occur (or has not occurred), pay
nothing for it. If you’re sure it has, pay the stake. And when
your credence does not take one of these extreme forms, your
betting quotient increases linearly with your credence.

▶ Similarly the other way around, i.e. if you’re the one offering
the bet.

▶ Thus it seems that betting quotients = credences. Or if you
like, credences in their action-guiding or pragmatic role are
betting quotients. (We will come back to this equation in the
next lecture.)



Credences are Betting Quotients by Definition?

▶ Some C20 writers thought of an agent’s betting quotients as
constitutive of their credences. de Finetti (1937/1964, pp.
101–2) wrote:

Let us suppose that an individual is obliged to evaluate
the rate p at which he would be ready to exchange the
possession of an arbitrary sum S (positive or negative)
dependent on the occurrence of a given event E , for the
possession of the sum pS ; we will say by definition that
this number p is the measure of the degree of probability
attributed by the individual considered to the event E or,
more simply, that p is the probability of E (according to
the individual considered).

▶ But you don’t have to think that credences are by definition
equal to betting quotients to think they are equal to them.



Dutch Book Arguments I

▶ The bettor is the agent placing the bet. The bookie (short for
bookmaker) offers the bet and chooses the stakes.

▶ In the i th bet, the bettor bets on whether state Ei obtains.
The bets are all indexed by i in some index set I .

▶ The bettor has to choose a number qi for each bet. This is
their betting quotient on Ei .

▶ The bettor then sets a stake Si for the i th bet.

▶ Si may be positive or negative or zero. (We thereby combine
the two cases of being offered a bet and offering a bet in one.)

▶ The bettor hands £qiSi over to the bookie to place the bet.



Dutch Book Arguments II

▶ If Ei obtains, the bettor gets the stake £Si . If Ei does not
obtain, she gets nothing.

▶ So in the first case (Ei obtains), the bettor ends up with
£(Si −qiSi ) = £Si (1−qi ) more than they did prior to the bet.

▶ And in the second case (Ei does not obtain), the bettor ends
up with £−qiSi more.

▶ We may tabulate this as follows (entries are pound values):

Ei Ω \ Ei

i th bet Si (1− qi ) −qiSi

▶ Let’s assume for the time being that utilities are equal to
monetary payoffs.



Ramsey–de Finetti Theorem: General

▶ A note on the word ‘coherent’. We’ll take it to mean that a
subject’s credences satisfy the axioms of probability.

▶ Some have given it another meaning. For them, a subject’s
credences are coherent if their betting quotients are such that
the bookie has no profit-guaranteeing strategy. Such a
strategy would involve placing different bets that the bettor
must accept given her betting quotients and yet, no matter
what happens, the bettor is guaranteed to lose money to the
bookie, i.e. the bookie is guaranteed a profit.

▶ To avoid any ambiguity, we will say that a bettor is ‘Dutch
Bookable’ (or just ‘DB-able’) to mean that the bookie has a
profit-guaranteeing strategy against the bettor. We could also
use the word ‘exploitable’.

▶ The version of the theorem we will prove is the following: If
an agent’s bettinq quotients violate the axioms of probability
then they are Dutch Bookable.



Ramsey – de Finetti Theorem: Non-Negativity &
Boundedness

Ei Ω \ Ei

i th bet Si (1− qi ) −qiSi

Non-Negativity Fails ⇒ DB-able

If qi < 0 then the bookie can set Si < 0, so that both
Si (1− qi ),−qiSi < 0.

Not Bounded by 1 ⇒ DB-able

If qi > 1 then the bookie can set Si > 0, so that both
Si (1− qi ),−qiSi < 0.



Ramsey – de Finetti Theorem: Normalisation

Ω ∅
i th bet Si (1− qi ) −qiSi

Not-Normalised ⇒ DB-able

We have already shown that if the subject is not Dutch
Bookable then 0 ≤ qi ≤ 1.

If qi < 1 then the bookie can set Si < 0, so that
Si (1− qi ) < 0. The left column is the only outcome.



Ramsey – de Finetti Theorem: Additivity I

As stated earlier, (Countable) Additivity applied to a collection of
mutually exclusive events. It is easier to prove a coherence result
for the special case of the axiom that applies to a collection of
mutually exclusive and jointly exhaustive events, namely:

Additivity*. For any E1,E2, . . . ,En, · · · ∈ Σ: if Ei ∩ Ej = ∅ for all
i ̸= j and

⋃
i∈N

Ei = Ω then
∑
i∈N

p(Ei ) = 1.

Proof of Equivalence. One direction (Additivity ⇒ Additivity∗) is
trivial in light of Normalisation. For the other, given mutually
exclusive Ei , apply Additivity∗ to events Ei in the index set plus the
event Ω \ (

⋃
i∈N

Ei ). This gives:∑
i∈N

p(Ei ) + p(Ω \
⋃
i∈N

Ei ) = 1

Rearranging and using the fact that 1− p(Ω \
⋃
i∈N

Ei ) = p(
⋃
i∈N

Ei )

(which follows from Additivity∗) gives Additivity.



Ramsey – de Finetti Theorem: Additivity II
Suppose the Ei are mutually exclusive and jointly exhaustive. As
above, the i th bet takes the form:

Ei Ω \ Ei

i th bet Si (1− qi ) −qiSi

Not-Additivity∗ ⇒ DB-able
Suppose the outcome is Ej . Then the bettor gains

Sj(1− qj)−
∑
i ̸=j

Siqi

If
∑
i
qi ̸= 1, the bookie sets all stakes = S . The bettor’s gain is

S(1− qj −
∑
i ̸=j

qi ) = S(1−
∑
i

qi )

If
∑
i
qi < 1, the bookie sets S < 0, so that S(1−

∑
i
qi ) < 0.

If
∑
i
qi > 1, the bookie sets S > 0, so that S(1−

∑
i
qi ) < 0.



What Kind of Additivity?

▶ An interesting feature of the argument just given is that we
haven’t insisted on Countable Additivity.

▶ We want all the sums to be finite in order to manipulate
expressions such as

∑
i
Siqi . But this can hold when the index

set I , from which the i are drawn, is countably infinite. Or
even uncountable, if only countably many of these terms is
non-zero.

▶ More generally, we may be as liberal as we like about the size
of I as long as we impose the condition that

∑
i
|Siqi | and∑

i
qi are finite.



Converse? I

▶ We have shown that if you’re not Dutch Bookable then your
betting quotients must satisfy Non-Negativity, Normalisation
and Additivity.

▶ A natural question now is whether the converse holds, i.e.
whether the fact that your betting quotients satisfy the axioms
of probability implies that you are not Dutch Bookable.

▶ Whether this is true depends on what a Dutch book is. We’ll
show shortly that if we allow Dutch books that exploit the
Ratio Formula, the claim is in fact false.

▶ First, though, we’ll show that in the scenario mentioned on
the previous slide, if the subject’s betting quotients sum to 1
then they are indeed not Dutch-bookable.



Converse? II
Suppose a bookie tries to extract a guaranteed profit from a bettor
whose betting quotients satisfy the probability axioms by offering
them a series of bets based on the mutually exclusive and jointly
exhaustive events Ei . As above, the i th bet takes the form:

Ei Ω \ Ei

i th bet Si (1− qi ) −qiSi

Additivity∗ (and Non-negativity) ⇒ Not DB-able
Proceed by reductio. If the outcome is Ej , the bettor gains

Sj(1− qj)−
∑
i ̸=w

Siqi

Thus, by the assumption that this is a Dutch Book, for all j :

Sj(1− qj)−
∑
i ̸=j

Siqi < 0



Converse? III
Rearranging shows that, for all j :

Sj <
∑
i

Siqi

Hence, since each qj is non-negative,

qjSj ≤ qj(
∑
i

Siqi ),

and at least one of these inequalities must be strict since at least
one of the qj is positive. Summing all these inequalities (at least
one of which is strict) for all the j in the index set yields∑

j

qjSj < (
∑
j

qj)(
∑
i

Siqi )

But since
∑
j
qj = 1, by Additivity∗, this yields:

∑
j
qjSj <

∑
i
Siqi .

Contradiction! (The two sides of the inequality are the same
value.)



Converse? IV
▶ We will introduce conditional bets shortly. What about

unconditional bets on events that are not mutually exclusive?

▶ Let’s consider the finite case first. Suppose a bookie tries to
extract a guaranteed profit from a bettor by offering them a
series of bets based on events Ei for 1 ≤ i ≤ n, with
respective stakes Si . These events may or may not be
mutually exclusive and may or may not be jointly exhaustive.

▶ This is equivalent to a series of bets on the 2n events
F1 ∩ · · · ∩ Fi · · · ∩ Fn where each Fi is either Ei or Ω \ Ei . And
these events are mutually exclusive and jointly exhaustive, so
we can apply the previous reasoning.

▶ Suppose for example that the bookie pays the bettor S1 if E1

and S2 if E2 (n = 2). This is equivalent to the following bet:
▶ payoff of S1 + S2 if E1 ∩ E2

▶ payoff of S1 if E1 ∩ Ω \ E2

▶ payoff of S2 if Ω \ E1 ∩ E2

▶ payoff of 0 if Ω \ E1 ∩ Ω \ E2



Converse? V
▶ What if the bets are placed on infinitely many events, say a

countable infinity of events? Can we reason in the same way?

▶ The problem is that if there is a countable infinity of events Ei

then this leads to an uncountable infinity of events that is the
intersection of each of the events or its complement, i.e. there
are uncountably many

∞⋂
i=1

Fi

where each Fi is Ei or Ω \ Ei . (The formal result is that ‘2 to
an infinite power’ is uncountable; this can be stated precisely
and proved.)

▶ So we would need more than Countable Additivity to apply
exactly the same reasoning, i.e. to show that the bettor is not
Dutch-Bookable. As we’ll see in a later lecture, however,
Uncountable Additivity is usually rejected.

▶ And of course if there are infinitely many stakes Si , we have
to ensure that all the sums are well-defined.



Ratio Formula Dutch Book I

▶ Recall that in its credal form, the Ratio Formula is

cr(A|B) = cr(A ∩ B)

cr(B)
,

assuming cr(B) ̸= 0. A Dutch Book argument can also be
given for this principle. A conditional bet on A given B is a
bet that is called off if B does not occur, pays the bettor SA|B
if A and B occur and nothing if B occurs but A doesn’t. The
bettor’s betting quotient is qA|B . The betting quotients qA∩B
and qB and stakes SA∩B and SB have their obvious meanings:
they are the respective betting quotients and stakes for
respective bets on A ∩ B and B.

▶ Consider a bettor who places the three bets above with a
bookie: the conditional bet on A given B; the bet on A ∩ B;
and the bet on B.



Ratio Formula Dutch Book II
▶ There are three possible cases.

▶ A and B both occur. The bettor’s payoff is
SA|B(1− qA|B) + SA∩B(1− qA∩B) + SB(1− qB)

▶ A does not occur but B does. The bettor’s payoff is
−SA|BqA|B − SA∩BqA∩B + SB(1− qB)

▶ B does not occur. The bettor’s payoff is
−SA∩BqA∩B − SBqB

▶ Set SB = qA|BSA|B and SA|B = −SA∩B . For brevity, let SA∩B
be S . Then in each case the three (identical!) payoffs are:
▶ −S(1−qA|B)+S(1−qA∩B)−SqA|B(1−qB) = S(qA|BqB−qA∩B)
▶ SqA|B − SqA∩B − SqA|B(1− qB) = S(qA|BqB − qA∩B)
▶ −SqA∩B + SqA|BqB = S(qA|BqB − qA∩B)

▶ If qA|BqB < qA∩B , the bookie can choose S > 0 to guarantee
themself a profit.

▶ If qA|BqB > qA∩B , the bookie can choose S < 0 to guarantee
themself a profit.

▶ So if the bettor is not Dutch bookable, qA|BqB = qA∩B .



Ratio Formula Converse Dutch Book Argument I
We now give a converse Dutch Book argument involving the ratio
formula. Namely: if qA∩B = qA|BqB then the bettor is not Dutch
Bookable with this kind of bet. (Assuming their betting quotients
also satisfy the other axioms—this will be implicit.)

Let’s rewrite the three payoffs in the following way, availing
ourselves of matrix multiplication.1st payoff
2nd payoff
3rd payoff

 =

1− qA|B 1− qA∩B 1− qB
−qA|B −qA∩B 1− qB

0 −qA∩B −qB

 SA|B
SA∩B
SB


And let’s now write qA|B as λ and qB as µ. The equation
qA∩B = qA|BqB may be rewritten as qA∩B = λµ. Note that at
least one of λµ, (1− λ)µ and 1− µ is non-zero. Also, if µ = 0
there is no conditional bet; and since 1 ≥ µ ≥ 0, we may assume
1 ≥ µ > 0. Finally, since λ = qA∩B

qB
and the agent’s unconditional

betting quotients satisfy the probability axioms, it follows that
1 ≥ λ ≥ 0. Substituting in, this gives:



Ratio Formula Converse Dutch Book Argument II1st payoff
2nd payoff
3rd payoff

 =

1− λ 1− λµ 1− µ
−λ −λµ 1− µ
0 −λµ −µ

 SA|B
SA∩B
SB


Let’s now multiply the first row by λµ, the second by (1− λ)µ and
the third by 1− µ. The right-hand side becomes λµ(1− λ) λµ(1− λµ) λµ(1− µ)
−λ(1− λ)µ −λ(1− λ)µ2 (1− λ)µ(1− µ)

0 −λµ(1− µ) −µ(1− µ)

 SA|B
SA∩B
SB


A little algebra shows that the entries in each column sum to 0.
For a Dutch Book, all three payoffs must be negative, so
multiplying them by λµ, (1− λ)µ and 1− µ, all of which are
non-negative and at least one of which is positive, and summing
the entries in the resulting vector must yield a negative real
number. But summing the entries in the column vector resulting
from multiplying the matrix by the column vector of stakes on the
right-hand side yields 0. Contradiction.



Ratio Formula Converse Dutch Book Argument II

To recap, the left-hand-side vector is: λµ× 1st payoff
(1− λ)µ× 2nd payoff
1− µ× 3rd payoff


Whereas the right-hand-side one is: λµ(1− λ) λµ(1− λµ) λµ(1− µ)
−λ(1− λ)µ −λ(1− λ)µ2 (1− λ)µ(1− µ)

0 −λµ(1− µ) −µ(1− µ)

 SA|B
SA∩B
SB


The sum of the LHS vector’s entries is negative (if the agent has
been Dutch booked), whereas the sum of the RHS vector’s entries
is 0, since each column sums to 0. Contradiction. It follows that if
qA|BqB = qA∩B then the agent is not susceptible to this sort of
Dutch Book.



Summary

▶ If the agent’s betting quotients fail to satisfy Non-Negativity,
or Normalisation, or Countable Additivity, she is
Dutch-Bookable.

▶ If the agent’s betting quotients satisfy Finite Additivity (and
the other two Kolmogorov axioms), she is not
Dutch-Bookable (with this kind of bet).

▶ If the agent’s betting quotients don’t satisfy the Ratio
Formula, she is Dutch-Bookable.

▶ If the agent’s betting quotients satisfy the Ratio Formula (and
the Kolmogorov axioms), she is not Dutch-Bookable (with
this kind of bet).
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Recap

▶ Last time we looked at Dutch Book Arguments.

▶ Today, we’re going to look at some criticisms levelled at
Dutch Book arguments as arguments for probabilism. (There
are more than we have time to go over.)

▶ The first kind target the link between credences and
dispositions to bet.

▶ The second kind target the assumption of a linear relationship
between money and utility. Dutch Book arguments seem to
rely on this assumption.



Credences and Dispositions to Bet I

▶ The idea that behavioural dispositions are constitutive of
mental states was very much in the air in the mid-twentieth
century (e.g. Wittgenstein, Ryle, B.F. Skinner in psychology).

▶ But it is widely rejected, even derided, these days.

▶ Super-Spartans suffer pain uncomplainingly. They still feel
pain even though they lack the associated behavioural
dispositions. (This example is owed to Hilary Putnam.)

▶ On the prevailing contemporary picture, the link between
behaviour and mental states is weaker, defeasible and holistic.



Credences and Dispositions to Bet II

▶ For the case of betting quotients (which captures an agent’s
dispositions to accept or reject certain bets) and credences,
consider agents whose dispositions to place certain bets don’t
seem to be aligned with their corresponding credences.

▶ One example are agents who will never bet on anything.
Perhaps they are very puritanical and have taken a religious
vow never to gamble. So ingrained is this self-ordinance that
they no longer even have the inclination to bet on anything
(they don’t even have a disposition that is trumped in some
way). And yet they might well have credences, e.g. about
whether it will be sunny tomorrow.

▶ At the other extreme, imagine agents who get a kick out of
betting. Going to the casino every night is their favourite
pastime. They’re a taker for pretty much any gamble you can
offer them. Even hypothetical bets are so enticing that they’ll
accept them for odds that don’t reflect their credences.



Credences and Dispositions to Bet III

▶ We may also imagine agents who, although disposed to
accept any individual one of a collection of bets, would not be
disposed to accept all of them.

▶ Following Hájek (2008, p. 236), we might call the Package
Principle the requirement ‘to value a set of bets at the sum of
the values of the bets taken individually, or less specifically, to
regard a set of bets as fair if one regards each bet individually
as fair’.

▶ It’s not clear why this should be true in general.

▶ It’s even less clear in cases when there are interferences
between the bets. Hájek’s example: you’re very confident that
your partner is happy. You’re fairly confident the Democrats
will win the next election. But your partner hates you betting
on anything and finds out as soon as you do. So packaging
the bets together affects the odds you’re willing to accept.



Money and Utility
▶ Next, let’s think about the relationship between money and

utility.
▶ The payoffs in the last lecture were in terms of money. But an

obvious objection to the Dutch Book arguments we gave there
is that utilities do not match monetary payoffs that closely.

▶ For example, £100, 000 is surely worth a lot more to a pauper
than to a billionaire. Being gifted £100, 000 would transform
the former’s life, whereas it would make very little difference
to the latter. (Indeed, some billionaires earn that amount in a
few seconds.)

▶ Also, intuitively it seems rational to prefer being given
£100, 000 for sure to a bet with a payoff of £200, 000 with
probability 1

2 and 0 with probability 1
2 . This is known as risk

aversion.
▶ Economists and others model the relationship between money

(on the x-axis) and utility (on the y -axis) by means of a
concave function, for example (some restriction of) a
logarithmic function.



Concave Utility Function

·

u
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Concave Utility Function II

The following diagram illustrates risk aversion.

·x

u(x)

y

u(y)

px + (1− p)y

u(px + (1− p)y)



Utilities I

▶ The moral of the story is that, when giving Dutch Book
arguments and similar, we need to state payoffs in terms of
the subject’s utilities rather than money.

▶ We knew this all along: in the previous lecture, we first
introduced Expected Utility Theory and then made the
simplifying assumption that utilities can be equated with
monetary payoffs.

▶ Unfortunately, utilities cannot be observed directly but have to
be inferred. This seems to scupper the idea that credences
can be measured by looking at a subject’s willingness to
accept various bets.

▶ In fact, we can determine an agent’s utilities and credences
simultaneously, under certain assumptions, by considering
which acts they prefer. Frank Ramsey in the paper cited in the
previous lecture was the first to sketch how that can be done.



Utilities II

▶ Also, if we assume that utility functions can be approximated
locally by linear functions—as would be the case for example
if utility functions are logarithmic—then the equation of
utilities with monetary payoffs is acceptable, so long as the
stakes are small.

▶ (A potentially relevant result here is Lebesgue’s Theorem,
which implies that a continuous and increasing function on an
interval is differentiable almost everywhere.)

▶ Forgetting about the first set of problems (regarding
dispositions to bet), perhaps we could define credences as the
limit of a sequence of betting quotients for bets with payoffs
that tend to zero.



Violations of Expected Utility Theory

Moving on from Dutch Book Arguments, we’re now going to look
at three apparent violations of Expected Utility Theory. These are:

▶ The St Petersburg Paradox

▶ The Allais Paradox

▶ The Reflection Principle

We’ll then end with two outright fallacies: the Conjunction Fallacy
and the Base Rate Fallacy. In the next lecture, we’ll look at an
attempt to draw some philosophical morals from the latter.



The St Petersburg Paradox I
▶ You are invited to play a game involving a fair coin. The coin

is tossed until it lands on heads. If it lands on heads for the
first time after n tosses, you win 2n.

▶ Q1: How much should you pay to play this game?

▶ Answer to Q1: The probability of the coin landing heads for
the first time after n tosses is 1

2n , since the sequence has to be
n − 1 tails followed by heads. Your expected gain is∑

n∈{1,2,... }

1

2n
2n = 1 + 1 + · · ·+ 1 + . . .

▶ So the answer to Q1, according to Expected Utility Theory:
any finite amount is worth paying since the payoff is infinite.

▶ Q2: How much would you pay to play this game according to
Expected Utility Theory?

▶ Answer to Q2: pretty much no one would be prepared to pay
any amount to play this game.



The St Petersburg Paradox II

▶ Unlike the fallacies discussed below, the verdict in the St
Petersburg Paradox seems robust. Learning some probability
theory does not make people think that the intuitive initial
response was clearly mistaken, in the way that it would for a
fallacy.

▶ One might appeal to the diminishing marginal utility of
money, i.e. the fact that the utility function is concave. But
this in itself won’t block the argument, since we could set the
payoffs to be 2n in utils. For example, if u(£2n) = n then
consider payoffs of £22

n
(with utility 2n) if the coin lands on

heads for the first time after n tosses.

▶ A better response is that utilities are bounded. There is a
certain amount of money beyond which receiving even more
might not be desirable. It might even be undesirable: think of
storage issues; or the fact that being the richest person on the
planet might bring you unwanted attention.



The Allais Paradox I

▶ Here is an example of an Allais paradox. The exposition is
based on Kahneman & Tversky (1979).

▶ Subjects were first given a choice between:

4000 with probability 0.8 vs 3000 (for sure)

and then a choice between

4000 with probability 0.2 vs 3000 with probability 0.25

Which would you choose in each case?



The Allais Paradox I

▶ Here is an example of an Allais paradox. The exposition is
based on Kahneman & Tversky (1979).

▶ Subjects were first given a choice between:

4000 with probability 0.8 vs 3000 (for sure)

and then

4000 with probability 0.2 vs 3000 with probability 0.25

Which would you choose in each case?

–20% of subjects chose 4000 with probability 0.8 vs 80% who
chose 3000 for sure.
–65% of subjects chose 4000 with probability 0.2 vs 35% who
chose 3000 with probability 0.25



The Allais Paradox II

Expected Utility Theory is inconsistent with the majority choice,
since the following pair of inequalities is inconsistent:

0.8u(4000) < u(3000)

and

0.2u(4000) > 0.25u(3000)

as is readily seen by multiplying the bottom inequality by 4.



The Reflection Effect I

The following table is from Kahneman & Tversky (1979, p. 22).

Positive Prospects Negative Prospects
Problem 3: (4,000, 0.80) < (3,000) Problem 3’: (-4,000, 0.80) > (-3,000)

N = 95 [20] [80]∗ N = 95 [92]∗ [8]
Problem 4: (4,000, .20) > (3,000, .25) Problem 4’: (-4,000, .20) < (-3,000, 0.25)

N = 95 [65]∗ [35] N = 95 [42] [58]
Problem 7: (3,000, .90) > (6,000, .45) Problem 7’: (-3,000, 0.0) < (-6,000, .45)

N = 66 [86]∗ [14] N = 66 [8] [92]∗

Problem 8: (3,000, .002) < (6,000, .001) Problem 8’: (-3,000, 0.002) > (-6,000, .001)

N = 66 [27] [73]∗ N = 66 [70]∗ [30]



The Reflection Effect II

▶ As Kahneman & Tversky comment (1979, p. 22): ‘In each of
the four problems ... the preference between negative
prospects is the mirror image of the preference between
positive prospects. Thus, the reflection of prospects around 0
reverses the preference order. We label this pattern the
reflection effect.’

▶ They point out that risk aversion in the positive cases is
accompanied by risk seeking in the negative ones.

▶ As in the case of the Allais Paradox, Problems 3 and 4 are
inconsistent with Expected Utility Theory (multiplying factor
= 4), as are Problems 7 and 8 (multiplying factor = 45). And
they add: ‘The same psychological principle — the
overweighting of certainty — favors risk aversion in the
domain of gains and risk seeking in the domain of losses’
(Kahneman & Tversky 1979, p. 23).



The Reflection Effect III

▶ You might argue that what Problems 3 and 4 show is that
people prefer prospects with high expected value and small
variance. But Problems 3’ and 4’ go against that thought.
Kahneman & Tversky (1979, p. 23) comment: ‘our data are
incompatible with the notion that certainty is generally
desirable. Rather, it appears that certainty increases the
aversiveness of losses as well as the desirability of gains.’

▶ Their prospect theory (which we cannot present here) replaces
probabilities with decision weights and assigns to each
outcome a subjective value relative to a reference point
(rather than final asset positions).



The Conjunction Fallacy and the Base Rate Fallacy

▶ H.G. Wells once famously wrote: ’A certain elementary
training in statistical method is becoming as necessary for
everyone living in this world of today as reading and writing’
(cited in Gigenrenzer 2008, p. 127).

▶ Alas, almost all of us handle probabilities (and statistics)
poorly.



The Conjunction Fallacy I

▶ The Conjunction Fallacy is Danny Kahneman and Amos
Tversky’s name for people’s tendency to judge a conjunction
of two events to be more probable than just one of the two.
(See e.g. ch. 15 of the former’s 2012 book.)

▶ In one of their most famous experiments, the two of them
described a made-up woman by the name of Linda as follows:

Linda is thirty-one years old, single, outspoken, and very
bright. She majored in philosophy. As a student, she
was deeply concerned with issues of discrimination and
social justice, and also participated in antinuclear demon-
strations. (Kahneman 2012, p. 179)

▶ Experimental subjects were then asked which of a range of
statements is more likely to be true. They included the
statement that (i) Linda is a bank teller, and (ii) Linda is a
bank teller and feminist.



The Conjunction Fallacy II
▶ People, including statistically highly educated people (e.g.

doctoral students in decision science at top institutions),
overwhelmingly thought (ii) more likely than (i).

▶ But it is easy to show from the probability axioms that
p(A ∧ B) ≤ p(A). (To use conjunction—in our event setting
we would use intersection.)

▶ Kahneman’s explanation (2012, pp. 182–3):

The judgments of probability that our respondents offered
... corresponded precisely to judgments of representative-
ness (similarity to stereotypes). Representativeness be-
longs to a cluster of closely related basic assessments that
are likely to be generated together. The most represen-
tative outcomes combine with the personality description
to produce the most coherent stories. The most coherent
stories are not necessarily the most probable, but they are
plausible, and the notions of coherence, plausibility, and
probability are easily confused by the unwary.



The Conjunction Fallacy III

▶ Hacking (2001, p. 66) wonders whether people attend closely
to the exact wording of the question. Maybe (to paraphrase
him a little) they hear the question ‘Which is more probable?’
as ’Which is the most useful and instructive thing to say
about Linda?’.

▶ Fielder (1988) claims that the percentage of people who
commit the fallacy drops dramatically if the word ‘probability’
in the question is replaced by the word ‘frequency’ (and
cognates).

▶ To explain the next fallacy, we must set out Bayes’s Rule.



Bayes’s Rule

The following result, known as Bayes’s Rule or Bayes’s Theorem, is
an immediate corollary of the probability axioms and the ratio
formula p(A|B) = p(A∩B)

p(B) , if p(B) ̸= 0:

p(H|E ) = p(E |H)× p(H)

p(E )

The letter E is suggestive of ‘evidence’ and H of ‘hypothesis’. The
result is owed to the reverend Thomas Bayes (and/or Richard Price
who edited and published his notes following Bayes’s death) in the
mid-18th century.

p(E ) and p(H) are often known as prior probabilities, i.e. prior to
anything being supposed or—in the temporal version—prior to
learning evidence E . Similarly, p(H|E ) is known as the posterior.
And (for historical reasons), p(E |H) is known as the likelihood.



Law of Total Probability

A partition is a set of mutually exclusive and jointly
exhaustive events. In other words, in a probabilistic context, a
collection {Ei : i ∈ I}, each of which is an element of the
sigma-algebra, such that Ei ∩ Ej = ∅ if i ̸= j , and

⋃
i∈I

Ei = Ω.

Letting the index set I be finite, the Law of Total Probability
may be stated as follows, where E1, . . . ,En is a partition (and
we assume that p(Ei ) > 0 for each i):

p(F ) =
n∑

i=1

p(F |Ei )p(Ei )

The proof easily follows from the Ratio Formula, the fact that
the event F is the union of the n mutually exclusive events
F ∩ E1, . . . ,F ∩ En, and the (Finite) Additivity axiom.



Bayes’s Rule – Law of Total Probability Version

When there are lots of mutually exclusive and jointly exhaustive
hypotheses H1, . . . ,Hn in play, we may avail ourselves of the Law
of Total Probability and write Bayes’s Rule as follows:

cr(H1|E ) =
p(E |H1)× p(H1)
n∑

i=1
p(E |Hi )× p(Hi )

Note that, Hn may be the catch-all hypothesis, i.e. we specify
H1, . . . ,Hn−1 and define Hn as ¬(H1 ∨ · · · ∨ Hn−1).



Reichenbach (1935/1949, pp. 94–5) on Bayes’s Rule
The range of application for Bayes’s rule is extremely wide, because nearly all
inquiries into the causes of observed facts are performed in terms of this rule.
The method of indirect evidence, as this form of inquiry is called, consists of
inferences that on closer analysis can be shown to follow the structure of the
rule of Bayes. The physician’s inferences, leading from the observed symptoms
to the diagnosis of a specified disease, are of this type; so are the inferences of
the historian determining the historical events that must be assumed for the
explanation of recorded observations; and, likewise, the inferences of the
detective concluding criminal actions from inconspicuous observable data. In
many instances the use of probability relations is not manifest because the
probabilities occurring have either very high or very low values. Thus, when a
corpse is found, it is virtually certain that a murder has been committed; and a
fingerprint on the handle of a pistol may be considered as strict evidence for
the assumption that a certain person X has fired the pistol. That even in such
cases the inference has the structure of Bayes’s rule is often seen from the fact
that appraisals of the antecedent probabilities are made. Thus an inquiry by the
detective into the motives of a crime is an attempt to estimate the antecedent
probabilities of the case, namely, the probability of a certain person committing
a crime of this kind, irrespective of the observed incriminating data. Similarly,
the general inductive inference from observational data to the validity of a given
scientific theory must be regarded as an inference in terms of Bayes’s rule.



Base Rate Fallacy I

Gerd Gigerenzer reports the following:

...physicians with an average of 14 years professional expe-
rience were asked to imagine using the Haemoccult test to
screen for colorectal cancer (Hoffrage & Gigerenzer, 1998).
The prevalence of cancer was 0.3 percent, the sensitivity
of the test was 50 percent, and the false positive rate was
3 percent. The doctors were asked: What is the probabil-
ity that a person who tests positive actually has colorectal
cancer? The correct answer is about 5 percent. How-
ever, the physicians’ answers ranged from 1 percent to 99
percent, with about half estimating the probability as 50
percent (the sensitivity) and 47 percent (sensitivity minus
false positive rate). If patients knew about this degree of
variability and statistical innumeracy they would be justly
alarmed. (2008, pp. 127–8)



Base Rate Fallacy II

▶ Let’s use Bayes’ rule to work out the correct answer.

p(ca|+ ve) =
p(+ve|ca)× p(ca)

p(+ve|ca)× p(ca) + p(+ve|¬ca)× p(¬ca)

=
0.5× 0.003

0.5× 0.003 + 0.03× 0.997

=
0.0015

0.0015 + 0.02991

≈ 4.8%

▶ Conditional probabilities refer to different classes—those with
and without cancer in the above example—which, as
Gigenrezer (2008, p. 132) observes, people have difficulty
combining in their minds.
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Loose Ends

In this lecture, we’ll tie up some loose ends. We’ll look at:

▶ Conditional probability

▶ An alleged philosophical implication of the base rate fallacy

▶ Thick credences

▶ Additivity



Conditional Probability I

▶ In the first lecture, we encountered the Ratio Formula:
p(A|B) = p(A∩B)

p(B) , if p(B) ̸= 0, which we stressed is not a

definition of conditional probability (unlike in mathematics)
but a constraint on it.

▶ One reason is that there could be irrational subjects who have
conditional probabilities that do not obey the Ratio Formula.
Surely these are at least possible, if not actual.

▶ Another reason is that it seems possible for a conditional
credence cr(A | B) to be well-defined even when neither
cr(A ∩ B) nor cr(B) is defined. (Or at least one of the last
two is not defined.) The following two examples are inspired
by Sturgeon (2020, pp. 78–79).



Conditional Probability II: First Example

▶ You draw a ball from a bag about which you have no
information other than the following: the bag contains some
coloured balls; exactly three of them are blue; exactly one of
the (three) blue balls has a red spot.

▶ If RS = the claim that you hold a ball with a red spot and B
= the claim that you hold a blue ball, what should cr(RS |B)
be? It seems pretty clear that the answer is 1

3 .

▶ You don’t seem to have an exact credence in RS nor one in
B. If that’s right, cr(RS |B) cannot be defined as cr(RS∩B)

cr(B) .

▶ A reply might be that cr(RS ∩B) = 1
N and cr(B) = 3

N , where
N is the (unknown) number of balls in the bag, so that the
Ratio Formula’s right-hand-side is defined (and of course
1
N
3
N

= 1
3). Ideal subjects will have a credence for each of the

possible values of N, and then using the Law of Total
Probability, cr(RS |B) can be derived from the Ratio Formula.



Conditional Probability III: Second Example

▶ A madman by the name of Tramp is standing for office. You
have no idea what his chances of being elected are. You are
99% certain, however, that if elected he will wreak havoc.

▶ It seems that your credence in Tramp’s wreaking havoc given
that he is elected is 0.99, although you have no credence in
(a) his being elected or in (b) his being elected and wreaking
havoc.

▶ However, the same style of reply as in the previous example
could be given here as well.

▶ A counter-reply might be that we should not insist on ideal
agents having credences in all propositions. (There is a
connection here with the Regularity Principle, to be discussed
next time.) Moreover, we might be interested in the credences
of non-ideal subjects. Or at least not ideal in this respect.



Credal Eliminativism I
Let’s now move on to another topic: the base rate fallacy,
discussed in the previous lecture. Let’s connect it to more
philosophical concerns. Some philosophers are suspicious of
credences. Richard Holton is one of them. He thinks having
credences is too cognitively demanding for creatures like us. Here
is how he puts the point (Holton 2014, p. 14):

Unless their powers of memory and reasoning are very
great, those who employ credences risk being overwhelmed
by the huge mass of uncertainty that the approach gener-
ates. First, they will have to store very much more infor-
mation: rather than just discarding the propositions that
aren’t believed and focusing on those that are, they will
have to keep track of all of them and their associated cre-
dences. Second, they will have to be able to deploy the
complicated methods needed for probabilistic reasoning.
The problem will be all the worse if, in Bayesian fashion,
they update their credences by conditionalization.



Credal Eliminativism II

▶ He continues:

...if the Bayesian picture has a role, it is as an idealization.
If it is to do that, however, we had better approximate
Bayesian agents. It had better be that we can form cre-
dences and that we can conditionally update on them, even
if we do not always do both perfectly. My contention ...
is that even this minimal claim is false. I argue that we
cannot form credences at all. The Bayesian approach is
not an idealization of something we actually do. Instead,
it is quite foreign to us. Just as our core native delibera-
tive state is that of the simple intention, so our core native
epistemic state is that of simple, all-out belief. (2014, p.
14)



Credal Eliminativism III

▶ Holton doesn’t deny that beings with different cognitive lives
to ours could have credences. He just thinks humans don’t.

▶ And he does concede that humans have what he calls ‘partial
beliefs’, which come in degrees, unlike full beliefs. He explains
the contrast between the two as follows (2014, p. 28):

All-Out Belief
One all-out believes p if one takes p as a live possibility
and does not take not-p as a live possibility.

Partial Belief
One partially believes p if one takes p as a live possibility
and takes not-p as a live possibility.

▶ Interestingly, one of his arguments for credal eliminativism
(my label, not his) exploits the base-rate fallacy.



Credal Eliminativism IV

▶ Holton thinks we sometimes believe there is a certain chance
that something is true. But he thinks the probability is in the
content rather than the attitude.

▶ Linguistic phenomena, although inconclusive, seem to support
this view. For example he points out (2014, p. 17) that we say

I believe that p is twice as likely as q

rather than

I believe p twice as much as I believe q.



Holton on the Base Rate Fallacy I

As Holton points out, also drawing on Gigerenzer (2008, ch. 9),
for most people the following is a very difficult question.

The probability that a woman has breast cancer is 1%. If
she has breast cancer, the probability that a mammogram
will show a positive result is 80%. If a woman does not
have breast cancer, the probability of a positive result is
10%. What is the probability that a woman who has a
positive mammogram result has breast cancer? (Holton
2014, p. 22)

Virtually no one gets the answer right. Fewer than one in 10
physicians sampled did!



Holton on the Base Rate Fallacy II

In contrast, the following is a much easier question (half of
12-year-olds can solve it).

10 out of every 1000 women have breast cancer. Of these
10 women with breast cancer, 8 will have a positive mam-
mogram result. Of the remaining 990 women who do not
have breast cancer, 99 will have a positive mammogram
result. What is the probability that a woman who has a
positive mammogram result has breast cancer? (Holton
2014, p. 23)



The Base Rate Fallacy and Credal Eliminativism I

▶ Holton takes the base rate fallacy to support the idea that
probabilistic elements are in the contents rather than
attitudes.

▶ As he sees it, if we had credences, we would find the above
calculations easier when they are presented as conditional
probabilities rather than frequencies. We could just apply
Bayes’s rule whereas the frequency representation would
require a further step as we would have to convert the data
into conditional probabilities.

▶ In contrast, that the probabilities are represented in the
content explains the data. Subjects just do some arithmetic
on the content of their belief in the frequency case, and in the
conditional probability case try to apply the more complicated
Bayes’s rule.



The Base Rate Fallacy and Credal Eliminativism II

▶ Holton’s argument is certainly interesting. At best, however, I
find it incomplete.

▶ It’s incomplete because the background picture of how (a) we
reason with credences, (b) whether this reasoning is explicit or
implicit, etc. has been completely omitted. When the
contours of that picture are better known, the force of the
argument will be clearer.

▶ It’s certainly not clear why the credence view should be
committed to our performing Bayesian reasoning with explicit
numerical values in a fast and competent way when presented
with conditional probability data of the sort contained in the
mammogram/cancer case.



The Base Rate Fallacy and Credal Eliminativism III

▶ Whatever we do, it’s unlikely that we explicitly work with
exact credences in most everyday situations. My guess—and I
confess that I haven’t performed the experiment—is that
people would do much better if the example used qualitative
language.

The probability that a woman has breast cancer is ex-
tremely low. If she has breast cancer, the probability that
a mammogram will show a positive result is very high. If
a woman does not have breast cancer, the probability of a
positive result is lowish. In qualitative terms, what do you
think the probability is that a woman who has a positive
mammogram result also has breast cancer?

▶ And the linguistic data might look different then too (e.g.
‘I’m much more confident of p than q’).



The Base Rate Fallacy and Credal Eliminativism IV
The example also contains what, for most subjects, is new
information/data. Maybe we are much better at these sorts of
qualitative calculations with more familiar information/data. As in
the following structurally identical example to medical one, which
uses qualitative terms and more familiar language.

If you’re a British sportsperson, you’re extremely unlikely
to win Wimbledon in any given year. But if you do happen
to win Wimbledon that year, you stand a very good chance
of walking away with the BBC [British] Sports Personality
of the Year award. Of course, if you’re just any old British
sportsperson, the chances of your becoming BBC Sports
Personality of the Year that year are fairly low. On that
basis, what would you say the chances are that the BBC
Sports Personality of the Year is a Wimbledon winner?

But of course here we have to exclude the hypothesis that people
are simply using their background knowledge (or estimate) of the
relevant frequency to assess the claim.



Thick Credences I
▶ Credences are point-valued subjective probabilities. They are

hyper-precise.
▶ Are there also interval-valued subjective probabilities?
▶ You are told by an authority on the matter that 3-to-5 percent

of Norwegians voters vote for the Green Party. How sure
should you be that Frida, about whom you know nothing
other than that she is a Norwegian voter, votes for the Green
Party? It doesn’t seem unreasonable to answer: 3 to 5%.

▶ You are told that exactly 80%-to-90% of balls in a box are
red. You reach in the box and are about to grab a ball. How
confident should you be that you hold a red ball? It doesn’t
seem unreasonable to answer: 80-to-90%. (Taken from
Sturgeon 2020, p. 63.)

▶ If we take this at face value, it seems that there are thick (or
mushy or interval-valued or imprecise) subjective probabilities.
The alternative, non-face-value, approach would be to argue
that the respective answers should be 4% and 85%
respectively.



Thick Credences II

▶ How do we handle thick credences?

▶ For example, how do we add thick credences together?

▶ Sturgeon (2020, pp. 85–6) suggests using midpoints.

▶ In other words, if E1, . . .En partition the sample space Ω, and
each is assigned a confidence interval [li , ui ], for 1 ≤ i ≤ n

then
n∑

i=1
( li+ui

2 ) = 1. Similarly for conditional probability

(however we derive it from the n-many intervals [li , ui ]):

lA|B + uA|B
2

=
lA∩B+uA∩B

2
lB+uB

2

▶ But to my mind this is a disappointingly thin notion of thick
confidence. The interval-valued credence [li , ui ] effectively
behaves as the point-valued one li+ui

2 .



Kolmogorov Axioms Again

▶ Recall from the first lecture the probability/Kolmogorov
axioms, defined on a measurable space ⟨Ω,Σ⟩:
▶ Non-Negativity: for any E in Σ, p(E ) ≥ 0.
▶ Normalisation: p(Ω) = 1.
▶ Countable Additivity: For any E1,E2, . . . ,En, · · · ∈ Σ: if

Ei ∩ Ej = ∅ for all i ̸= j then p(
∞⋃
i=1

Ei ) =
∞∑
i=1

p(Ei ).

▶ One structural feature is the use of real numbers R. Another
structural feature is that Σ is a σ-algebra over the set of
outcomes Ω. This is related to the third axiom.

▶ An obvious question one could ask about the third axiom:
why Countable Additivity? Why not Finite Additivity or
Uncountable Additivity?



For Countable Additivity: Extrinsic Reasons
▶ The standard theory of probability is a deep and central area

of mathematics.

▶ Countable Additivity is justified by its inclusion in this
powerful and important theory. In particular, proofs of various
limit theorems and laws of large numbers (which are not in
the scope of this course) depend on it. Finite Addivity can’t
do this job.

▶ But on the same sorts of grounds, that is as far as we should
go. Continuum-Sized Additivity would annihilate swathes of
probability theory.

▶ Consider for example the uniform distribution on [a, b], where
a < b, whose probability density function is 1

b−a . This
distribution could not exist, since 1 = the probability of [a, b]
would have to be the sum of the uncountably many p(x) for
each x ∈ [a, b], which would have to be the same.

▶ Call these sorts of reasons for Countable Additivity and
against stronger or weaker forms extrinsic reasons.



Countable Additivity – Intrinsic Reasons

▶ There are also intrinsic reasons behind Countable Additivity.

▶ One is that it seems quite easy to conceive of assigning
probabilities to countably infinite sets, i.e. a series of events
indexed by the natural numbers

▶ Another is that some of the arguments for Finite Additivity
generalise to Countable Additivity. An example is the Dutch
Book Argument in an earlier lecture, as long as the sum of the
absolute values involved is finite, as shown in Williamson
(1999). In fact, our earlier argument did not specify the size
of the index set.

▶ Let’s look at an apparent argument against Countable
Additivity.



Countably Infinite Fair Lotteries

▶ A countably infinite fair lottery seems conceivable.

▶ Countably infinite means that we can take the lottery’s tickets
to be (indexed by) natural numbers.

▶ Fair means that every ticket has the same chance of winning.

▶ Let’s call this chance c. Fairness means that p(i) = c for all
i ∈ N.

▶ By Countable Additivity,

p(N) =
∑
i∈N

p(i) =
∑
i∈N

c =

{
0 if c = 0

undefined if c > 0

▶ Either way, this conflicts with Normalisation, i.e. the
requirement that p(N) = 1.



Response I

▶ It’s not clear that Countable Additivity is the culprit.

▶ Suppose we retreat to Finite Additivity, i.e. for any
E1,E2, . . . ,En with n finite: if Ei ∩ Ej = ∅ for all i ̸= j then

p(
n⋃

i=1
Ei ) =

n∑
i=1

p(Ei ).

▶ A countably infinite lottery in which each ticket has the same
chance of winning is consistent with Finite Additivity. This
chance has to be 0. (It can’t be positive since in that case it
would be greater than 1

n for some n, so that n tickets would
have probability greater than 1.)

▶ Using some more advanced logic than you might have
encountered (viz. the UltraFilter Lemma, which follows from
the Axiom of Choice), we can show that a function p exists
that is defined on P(N) and such that p(F ) = 0 for any finite
subset of N, and in particular any singleton, and p(CF ) = 1
for any cofinite subset of N.



Response I Continued

▶ However, it’s far from clear that this genuinely models a
countably infinite fair lottery. Let O be the set of even
numbers and E the set of even ones. Then either

p(O) = 1 and p(E ) = 0,

or

p(O) = 0 and p(E ) = 1.

▶ But this doesn’t capture our notion of a countably infinite fair
lottery. According to that notion, the sets O and E should
have the same probability.

▶ One can remedy this. Carry out the same trick on each of O
and E to obtain probability functions pO and pE that are
finitely additive, 0 on all finite subsets and 1 on all cofinite
sets. Then set p(X ) = pO(X∩O)+pE (X∩E)

2 , so that
p(O) = p(E ) = 1

2 .



Response I Continued

▶ But other intuitive principles aren’t satisfied. It’s easy to show
that the principle ‘if X ⊊ Y then p(X ) < p(Y )’ can’t be
satisfied by the above lottery.

▶ Nor more generally can the principle ‘if X and Y are
equinumerous then p(X ) = p(Y )’ (embodying the usual
Cantorian criterion of size). Consider for example a partition
N = A1 ∪ A2, where Ai is infinite and coinfinite, and
N = B1 ∪ B2 ∪ B3, with the same condition. The principle
forces p(A1) = p(A2) =

1
2 and p(B1) = p(B2) = p(B3) =

1
3

but also e.g. p(A1) = p(B2).

▶ The suspicion, then, is that the fact that Countable Additivity
is incompatible with the existence of a countably infinite fair
lottery is because there’s something wrong with the latter
notion rather than Countable Additivity.



Response II

▶ Easwaran (2013, p. 58) lays down a Comparative Principle. If
P1 and P2 are probability distributions,

(P1,E1) ≻ (P2,E2)

denotes that E1 is strictly more likely according to P1 than E2

is according to P2. The Comparative Principle states that if A
is a partition for two probability functions P1 and P2, it is not
the case that for every member a of A, (P2, a) ≻ (P1, a).

▶ Consider the ‘St Petersburg lottery’ in which the nth ticket
has a probability of 1

2n+1 of winning. Every ticket is more likely
to win under this lottery than the countably infinite fair one.
Hence the Comparative Principle is violated.



Response III

▶ Rothery (2024) points out a very strange consequence of
countably infinite fair lotteries if we assume that any finite
initial segment has probability 0. (It can’t be non-zero for the
reasons given earlier.)

▶ You play such a lottery on each of the seven days of the week.
Seven winning tickets are drawn, one on each day. Let’s
assume for simplicity (the moral is unaffected) that the tickets
are different.

▶ What are the chances that the sequence of winning numbers
is increasing?

▶ Since there are N! permutations of N objects, you would
imagine that the probability is 1

N! .



Response III Continued

▶ But actually you should, with probability 1, expect to see an
increasing sequence. Suppose Monday’s winning ticket was
k1. Because P(X ≤ k1) = 0, you should have credence 1 that
Tuesday’s winning number will be larger than Monday’s.
Similarly, Wednesday’s winning number should be larger than
Tuesday’s, etc.

▶ This result seems absurd.

▶ It also seems inconsistent. There is no reason not to consider
the run of tickets in reverse order, starting from Sunday’s then
Saturday’s etc. With probability 1, you should then expect the
Sunday-Monday sequence to be increasing, i.e. the
Monday-Sunday sequence to be decreasing.
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Bayesianism I

▶ To recap: according to probabilism, an agent’s beliefs come in
degrees called credences rationally required to obey the
probability (i.e. Kolmogorov) axioms.

▶ Bayesianism, roughly, is the idea that an agent has credences
that are rationally required to obey some probabilistic
principles. These include the probability axioms and the Ratio
Formula encountered earlier (so Bayesians are probabilists).
But they may include other principles too.



Bayesianism II

Recall the three probability/Kolmogorov axioms on ⟨Ω,Σ, p⟩:
▶ Non-Negativity: for any E in Σ, p(E ) ≥ 0.

▶ Normalisation: p(Ω) = 1.

▶ Countable Additivity: For any E1,E2, . . . ,En, · · · ∈ Σ: if

Ei ∩ Ej = ∅ for all i ̸= j then p(
∞⋃
i=1

Ei ) =
∞∑
i=1

p(Ei ).

▶ And the Ratio Formula:

p(A|B) = p(A ∩ B)

p(B)
, if p(B) ̸= 0

.

▶ From which you’ll remember Bayes’s Theorem follows (when
all terms are well-defined):

p(H|E ) = p(E |H).p(H)

p(E )



Bayesianism III

▶ The obvious question is what other principles do or should
Bayesians add to these? What are all the requirements on
rational credence?

▶ Different types of Bayesianism result from adding different
principles to these core ones. They all pretty much agree that
an updating rule should be added. This is the rule to be
discussed shortly which in its simple form is called
Conditionalisation.



Objective vs Subjective Bayesianism

▶ Subjective vs Objective Bayesianism is not a binary distinction
but a scale.

▶ At the (extreme) subjective end of the spectrum are those
who think the only rational constraints are adherence to the
probability axioms and the Ratio Formula.

▶ At the (extreme) objective end are those who adhere to a
principle along these lines (cited in Titelbaum 2022, p. 129):
Given any proposition and body of total evidence, there is
exactly one attitude it is rationally permissible for agents with
that body of total evidence to adopt towards that proposition.

▶ This is one of the issues we’ll touch on (although certainly not
resolve) in this lecture and the next.



Synchronic vs Diachronic Constraints

▶ Let’s think about what principles credence might satisfy other
than the four above if they are to be rational.

▶ In particular, so far we’ve looked at synchronic constraints, i.e.
constraints governing a rational subject’s credences at a given
time.

▶ Let’s now look at a diachronic constraint, i.e. a constraint
governing a rational subject’s credences across time.



Conditionalisation I
▶ Suppose you know a die to be fair. You then learn that it was

thrown and landed on an even number. What should your
credence be that it landed on a 2? Answer: 1

3 .

▶ Suppose more generally your credences are such that
cr(P|Q) = r . What should your credence in P be if you learn
that Q? Answer: r .

▶ Now think about the situation in which an agent has
credences at time t1 and then learns some facts represented
by proposition E between t1 and t2. (We will continue to
speak of events and propositions interchangeably. And let’s
assume throughout that E and H are both events in the
sigma algebra and that at t1, cr(E ) > 0.)

▶ What should the agent’s new credences be? How should she
update them in light of this new evidence?

▶ Let’s subscript the agent’s (rational) credence function at
different times: cr1 at time t1 and cr2 at time t2.

▶ The answer to the question just asked seems to be...



Conditionalisation II
▶ Conditionalisation: If E represents everything learnt by the

agent between t1 and later time t2 then for any H:

cr2(H) = cr1(H|E )

▶ NB Although the two are closely related, do not confuse
Conditionalisation with the Ratio Formula. The former is a
diachronic constraint (t1 and t2 both appear), whereas the
latter is synchronic (only one time appears). For comparison,
here is the Ratio Formula applied to events H and E at t1:

cr1(H|E ) = cr1(H ∩ E )

cr1(E )
.

▶ The Ratio Formula concerns credences at a specific time,
given by supposing that E occurs, while Conditionalisation
deals with how credences are updated over a period of time in
which the agent learns that E .



Conditionalisation III

▶ Conditionalisation is cumulative: conditionalising first on E1

then on E2 is equivalent to conditionalising on E1 ∩ E2.

▶ Conditionalisation is also commutative: conditionalising first
on E1 then on E2 is equivalent to conditionalising first on E2

then on E1.

▶ Since conditionalising on E1 ∩ E2 is equivalent to
conditionalising on E2 ∩ E1, cumulativity implies
commutativity.

▶ These are both desirable features of Conditionalisation:
learning two facts is equivalent to learning their conjunction;
and the order in which you learn them should not affect your
(rational) credences,



Proof that Conditionalisation is Commutative and
Cumulative

▶ Suppose the agent learns E1 between t1 and t2 then E2

between t2 and t3. (We assume all relevant credences are
well-defined.)

cr3(H) =
Cond

cr2(H | E2) =
RF2

cr2(H ∩ E2)

cr2(E2)
=

Cond

cr1((H ∩ E2) | E1)

cr1(E2 | E1)

=
RF1

cr1(H∩E2∩E1)
cr1(E1)

cr1(E2∩E1)
cr1(E1)

=
cr1(H ∩ E2 ∩ E1)

cr1(E2 ∩ E1)
=
RF

cr1(H | E2 ∩ E1)

▶ Note that E2 ∩ E1 = E1 ∩ E2.

▶ So we have verified commutativity and cumulativity.



Jeffrey Conditionalisation I

▶ We might worry that Conditionalisation relies on an overly
simple model of learning from experience.

▶ Often, a new piece of evidence is not known with certainty.
For example, to use a famous example of Richard Jeffrey’s,
you may have seen a piece of cloth by candlelight but not be
entirely sure whether it was green, blue or violet.

▶ You could say that the colour sense datum you received at the
time was something you knew with certainty then. But (i)
this is of little use to epistemology if you’re no longer sure of
its colour even a few seconds later; (ii) it’s not clear there are
sense data; (iii) even if there are, it’s far from clear we take in
their properties completely and infallibly (are you aware of all
the shapes and colours in your visual field right now?).



Jeffrey Conditionalisation II

▶ So it’s worth modifying Conditionalisation to allow for
uncertain evidence.

▶ The more complex updating rule is known as Jeffrey
Conditionalisation, first (clearly) stated in Jeffrey (1965).

▶ We’ll give the version based on finite partitions, using
credence functions at time t1 and t2 as above (where t1 < t2).

▶ As above, we assume that E1, . . . ,En and H are all events in
the relevant sigma algebra and that cr1(Ei ) > 0 for all i .



Jeffrey Conditionalisation III

▶ Jeffrey Conditionalisation: Given a finite partition
E1, . . . ,En (i.e. a mutually exclusive and jointly exhaustive set
of events):

cr2(H) =
n∑

i=1

cr1(H|Ei ).cr2(Ei )

▶ Since it is an updating rule, Jeffrey Conditionalisation is
diachronic: note the cr -subcripts ‘1’ and ‘2’.

▶ NB Do not confuse Jeffrey Conditionalisation with the Law of
Total Probability:

cr2(H) =
n∑

i=1
cr2(H|Ei ).cr2(Ei )

or

cr1(H) =
n∑

i=1
cr1(H|Ei ).cr1(Ei )

These two are synchronic whereas Jeffey Conditionalisation is
diachronic, as should be clear from the subscripts.



Jeffrey Conditionalisation IV

▶ Jeffrey Conditionalisation is reasonable when updates
‘originate’ (as Jeffrey put it) in the partition E1, . . . ,En, as in
the cloth example. They are driven by changes in credences in
this partition.

▶ As the equations on the previous slide make clear—look at two
different expressions for cr2(H)—Jeffrey Conditionalisation
crucially relies on the following Rigidity Condition:

cr1(H|Ei ) = cr2(H|Ei ) for all i

▶ In other words, conditional credences on the Ei do not change
between t1 and t2, only credences in the Ei themselves.



More Principles

▶ Conditionalisation and its more sophisticated replacement
Jeffrey Conditionalisation are updating rules. They have been
proposed as supplements to the credence version of the
probability axioms and the Ratio Formula.

▶ We’ll introduce two further principles often argued to be
rationally binding on credences: the first is the Principal
Principle, the second the Regularity Principle.

▶ In the next lecture, we’ll put Conditionalisation and the
Regularity Principle to work to see how Bayesians might
tackle the problem of induction.

▶ Before that, we’ll discuss how we might quantify the degree to
which evidence confirms a hypothesis.



The Principal Principle I

▶ Suppose you are told from an authoritative physicist (i.e. a
physicist you have complete trust in) that the chance of an
uranium atom decaying in the next hour is 1

10 . What should
your credence that it will do so be? Answer: 1

10 .

▶ You hold a coin you know to be fair in your hand. What
should your credence be that it will land heads if you toss it?
Answer: the same as its chance, namely 1

2 .

▶ More generally, it seems that you should—if you are
rational—adapt your credences to match the chances.

▶ This is what David Lewis’s Principal Principle states. It is a
chance-credence link.



The Principal Principle II

There are more or less precise ways of stating this. Here is Lewis’s
(1980, p. 266) formulation, with the notation slightly altered:

The Principal Principle. Let cr be any reasonable initial
credence function. Let t be any time. Let x be any real
number in the unit interval. Let Cht(A) = x be the propo-
sition that the chance, at time t, of A’s holding equals x.
Let E be any proposition compatible with Cht(A) = x that
is admissible at time t. Then

cr(A|Cht(A) = x & E ) = x .



Deference Principles

▶ The Principal Principle is a sort of deference principle. It says
that you should tailor your credences to the objective chances.
You should defer to them, if you like.

▶ As such, we can generalise it. Let Ex be any expert in the
broadest sense, i.e. someone or something (it needn’t be a
person) you trust/defer to. Suppose their credence in A is x .
What should yours be? Answer: x . In other words:

cr(A|CrEx(A) = x) = x

▶ Of course we can complicate this analysis if there are several
experts, each of whom you defer to partially regarding A.



The Regularity Principle I
▶ Recall the statement of Conditionalisation, upon learning E

between t1 and t2: cr2(H) = cr1(H|E ). Notice that if H’s
prior probability is 0, its posterior probability must also be 0.
(Prior = before updating; posterior = following it.)

▶ In particular, suppose H is not a logical contradiction. Then
however much evidence in support of H the subject might
gather, their credence in H will stay at 0.

▶ This seems counterintuitive, which is why some people have
proposed:

The Regularity Principle: In a rational credence distri-
bution, no logically contingent proposition receives uncon-
ditional credence 0.

(This is Titelbaum’s 2022, p. 99 formulation in terms of
propositions. Another name for the Regularity Principle is
Cromwell’s Rule.)



The Regularity Principle II

▶ The Regularity Principle implies that any partition of the
sample space must be countable, since in an uncountable
partition all but countably many events have probability 0.

▶ Argument sketch: there are countably many intervals of the
form In = ( 1

n+1 ,
1
n ] for n an integer ≥ 1. If the total probability

is to sum to 1, the collection of events that has probability in
each In must be finite. So the set of events with probability in
some In or other is at most countably infinite and cannot be
uncountable. Together with the Regularity Principle, this
means that the collection of events cannot be uncountable.
(We’ve assumed that uncountably many of these uncountably
many events correspond to logically contingent propositions.)



A Confirmation Measure I

▶ It is reasonable to see evidence E as to some degree
confirming H relative to Pr just in case Pr(H|E ) > Pr(H).

▶ This is known as positive probabilistic relevance.

▶ But can we measure this degree precisely, and if so how?

▶ Various confirmation measures have been proposed that try to
quantify degree of confirmation.

▶ We’ll look at one of these and show that it has some nice
features. This does not mean that it is the uniquely correct
confirmation measure.



A Confirmation Measure II
▶ The following measure is sometimes known as the log

likelihood-ratio measure of confirmation. (We assume
non-zero denominators throughout, which implies that
0 < Pr(H) < 1.)

l(H,E ) = log

[
Pr(E |H)

Pr(E |¬H)

]
▶ The measure gets its name from the following two versions of

Bayes’s Theorem.

Pr(H|E ) = Pr(H).Pr(E |H)
Pr(E) . Here Pr(E |H)

Pr(E) is the likelihood
ratio.

Pr(¬H|E ) = Pr(¬H).Pr(E |¬H)
Pr(E) . Here Pr(E |¬H)

Pr(E) is the
likelihood ratio.

▶ Positive values of l represent confirmation.
▶ Negative values of l represent disconfirmation.
▶ A zero l-value represents irrelevance.



Measure l : 1st nice feature

▶ One nice feature of l is that E confirms H just as much as it
disconfirms ¬H, i.e.

l(H,E ) + l(¬H,E ) = 0

▶ This is because

log

[
Pr(E |H)
Pr(E |¬H)

]
+ log

[
Pr(E |¬H)
Pr(E |¬¬H)

]
= log

[
Pr(E |H)
Pr(E |¬H) .

Pr(E |¬H)
Pr(E |¬¬H)

]

= log

[
Pr(E |H)
Pr(E |¬H) .

Pr(E |¬H)
Pr(E |H)

]
= log(1) = 0



Measure l : 2nd nice feature

▶ Following Carnap and others, it seems reasonable to take
entailment to be the strongest form of confirmation and
refutation the strongest form of disconfirmation.

▶ When E entails H, the denominator Pr(E |¬H) of

log

[
Pr(E |H)
Pr(E |¬H)

]
is 0, so l(H,E ) is infinite and hence larger than

any finite amount.

▶ And the only way l(H,E ) can be infinite when all probabilities
are well-defined is for Pr(E |¬H) = 0. This amounts to E
implying H as long we ignore events with probability 0. (This
is reasonable, since an implication can never be fully captured
by a confirmation measure based on Pr beyond ’up to
probability zero’.)

▶ In short, l agrees with the intuitive idea that entailment is the
strongest form of confirmation.

▶ And that refutation is the strongest form of disconfirmation.



Measure l : 3rd nice feature I
▶ Measure l makes confirmation by independent evidence

additive.

▶ To see this, suppose evidence E1 is probabilistically
independent of evidence E2 conditional on hypothesis H, i.e.

Pr(E1|E2 ∩ H) = Pr(E1|H)

which is equivalent to

Pr(E1 ∩ E2|H) = Pr(E1|H).Pr(E2|H)

▶ This also shows by the way that E1 is probabilistically
independent of E2 conditional on H iff E2 is probabilistically
independent of E1 conditional on H.

▶ Suppose further that evidence E1 is also probabilistically
independent of evidence E2 conditional on hypothesis ¬H, i.e.

Pr(E1|E2 ∩ ¬H) = Pr(E1|¬H)



Measure l : 3rd nice feature II

▶ The additivity property is that in such a case,

l(H,E1 ∩ E2) = l(H,E1) + l(H,E2),

i.e. the total degree of confirmation is simply the sum of the
individual degrees of confirmation.

▶ This is because

log

[
Pr(E1 ∩ E2 | H)

Pr(E1 ∩ E2 | ¬H)

]
= log

[
Pr(E1|H).Pr(E2|H)

Pr(E1|¬H).Pr(E2|¬H)

]
= log

[
Pr(E1|H)

Pr(E1|¬H)

]
+ log

[
Pr(E2|H)

Pr(E2|¬H)

]



Confirmation and Jeffrey Conditionalisation I

▶ Positive probabilistic relevance—Pr(H|E ) > Pr(H)—seems to
be criterial of confirmation.

▶ That is, conditionalising on E should rationally make you
more confident of H iff E confirms H.

▶ When using Jeffrey Conditionalisation, however, things are
more complicated.

▶ It could be that Pr(H|E ) > Pr(H) yet an increase in your
confidence in E decreases your confidence in H.

▶ The following example is taken from Titelbaum (2022, p.
449).



Confirmation and Jeffrey Conditionalisation II
Here’s a credence distribution at time t1. We observe that
pr1(H) = 0.46, pr1(B) = 0.2, pr1(E ) = 0.55. We’re going to
J-Conditionalise on B/¬B. Pr1(H|E ) = 0.375

0.55 > 0.46 = Pr1(H).

0.36

0.04
H

E

0.040.005

B

0.045 0.36

0.135

0.015



Confirmation and Jeffrey Conditionalisation III
The subject’s confidence in B has increased from 0.2 to 0.4. After
J-Conditionalising on B/¬B, Pr2(E ) = 0.6 > 0.55 = Pr1(E ) and
Pr2(H) = 0.42 < 0.46 = Pr1(H) even though Pr1(H|E ) > Pr1(H).

0.27

0.03
H

E

0.030.01

B

0.09 0.27

0.27

0.03



Confirmation and Jeffrey Conditionalisation IV

▶ This should not be surprising.

▶ We should not generally expect that

Your learning that E (i.e. updating your credence in E to 1)
⇒ your confidence in H increases

implies that

Your becoming more confident that E (i.e. revising your
credence in E upwards but not all the way to 1)

⇒ your confidence in H increases
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Hume and the Problem of Induction

▶ Inductive reasoning is from observed instances to unobserved
ones. It lies at the heart of the scientific method and everyday
empirical inference.

▶ Here’s a very brief summary of the sceptical problem Hume
raised for inductive inference. (I assume you’ve encountered it
before.)

▶ Hume argued that any justification for inductive reasoning is
either a priori or is a posteriori.

▶ If a priori (resting on relations of ideas, as he called them,
including pure mathematics and logic), it cannot convey any
empirical information and therefore cannot justify our
inductive practices.

▶ If a posteriori (based on assumptions about ‘matters of facts’)
it must assume some principle linking the observed to the
unobserved and therefore begs the question.

▶ The problem continues to vex philosophers to this day.



Hume’s Historical Context and Bayesianism

▶ Hume was familiar with the mathematical theory of probability
of his time. He is known to have read Jakob Bernoulli’s Ars
Conjectandi of 1713, mentioned in the first lecture. He
mentions probabilistic ideas (in a non-mathematical way) in
his 1739–40 Treatise (full title: A Treatise of Human Nature),
in which he first posed the problem of induction. .

▶ Bayes’s famous essay on probability was published in 1763, in
Hume’s lifetime (his dates are 1711–1776) but after his major
works were published. It’s unlikely that Hume read Bayes.

▶ Since then, various thinkers have argued that probabilistic
methods may help counter Hume’s objections to induction.

▶ We’ll briefly look at Russell’s idea at the start of the 20th
century.

▶ Mainly, we’ll focus on how Bayesians might respond to
Hume’s problem and assess their approach. I’ve partly drawn
on Howson (2000, ch. 4).



Russell on Induction

Here is how Russell expressed one version of Hume’s problem.

It has been argued that we have reason to know that the
future will resemble the past, because what was the future
has constantly become the past, and has always been found
to resemble the past, so that we really have experience of
the future, namely of times which were formerly future,
which we may call past futures. But such an argument
really begs the very question at issue. We have experience
of past futures, but not of future futures, and the question
is: Will future futures resemble past futures? This question
is not to be answered by an argument which starts from
past futures alone. We have therefore still to seek for some
principle which shall enable us to know that the future will
follow the same laws as the past. (Russell 1912, chapter
6)



Russell’s Inductive Principle I

Russell’s solution appeals to what he calls the principle of induction
and whose two parts he formulates as follows (1912, ch. 6)

(a) When a thing of a certain sort A has been found to
be associated with a thing of a certain other sort B, and
has never been found dissociated from a thing of the sort
B, the greater the number of cases in which A and B have
been associated, the greater is the probability that they
will be associated in a fresh case in which one of them is
known to be present;
(b) Under the same circumstances, a sufficient number of
cases of association will make the probability of a fresh
association nearly a certainty, and will make it approach
certainty without limit.



Russell’s Inductive Principle II
Russell (1912, ch. 6) takes the principle to be primitive.

The inductive principle, however, is equally incapable of
being proved by an appeal to experience. ... All arguments
which, on the basis of experience, argue as to the future or
the unexperienced parts of the past or present, assume the
inductive principle; hence we can never use experience to
prove the inductive principle without begging the question.
Thus we must either accept the inductive principle on the
ground of its intrinsic evidence, or forgo all justification of
our expectations about the future... Thus all knowledge
which, on a basis of experience tells us something about
what is not experienced, is based upon a belief which expe-
rience can neither confirm nor confute, yet which, at least
in its more concrete applications, appears to be as firmly
rooted in us as many of the facts of experience. The exis-
tence and justification of such beliefs...raises some of the
most difficult and most debated problems of philosophy.



Russell’s Inductive Principle and Circularity

▶ Howson’s dismissive comment about this and similar
approaches (2000, p. 19):

This is clearly not a critical response to Hume’s argument,
whose validity is the only question we are concerned with
here; the inductive-principle advocates explicitly or implic-
itly acknowledge the validity of the argument.

▶ The question is whether Bayesianism or any other account of
rationality can do better. To answer Hume, we must appeal
to some fundamental principles about rationality, including
reasoning about ‘matters of fact’. Won’t any such approach
beg the question against him?

▶ We’ll come back to this question of circularity below.



Bayesianism and Induction I

▶ Consider a stylised inference from finitely many instances of
F s that are observed to be G to the conclusion that all F s are
G s.

▶ We may order the observed instances in time: the first is F1,
the second F2, etc. The universal claim is then ’For all n, Fn
is G ’. Checking Fi to see whether it is G or not is an
‘experiment’ with a two-valued outcome: either it is G or it
isn’t.

▶ Some of the detail here is for specificity and not essential; e.g.
nothing changes if the set of outcomes is finite rather than 2.
Note that given human perceptual limitations, even aided by
instruments, all measurements are finite.

▶ Let’s call H the true hypothesis that for all n, Fn is G .



Bayesianism and Induction II

▶ Suppose we know that F1, . . . ,Fn are G . We then come
across Fn+1 and see that it is also G . Call this piece of
evidence, to which we assume you did not attach credence 0
or 1 previously, E . On the Bayesian picture, learning E should
boost rational credence in H.

▶ This fact follows immediately from Conditionalisation, which
states that your posterior credence in H, upon learning E , is
your prior credence in H given E . And from the Ratio
Formula, the latter is cr(H∩E)

cr(E) . Now H implies E , since H is a
general claim of which E is an instance. Hence
cr(H ∩ E ) = cr(H). And since 0 < cr(E ) < 1, it follows that

cr(H ∩ E )

cr(E )
=

cr(H)

cr(E )
> cr(H)

Hence hypothesis H is more likely after learning E than before.

▶ The result is very general and does not depend on H’s form.



Bayesianism and Induction III

▶ Recall that H is the true hypothesis that for all n, Fn is G . An
alternative hypothesis might be that no F is G . Or that all
and only the even-numbered Fn are G . And so on.

▶ Call the set of hypotheses {Ai : i ∈ I} where the index set I =
the set of countably infinite sequences each of whose members
is a 0 or 1. (H corresponds to the sequence 1111 . . . )

▶ By a similar argument to the one given in the last lecture, at
most a countable infinity of these hypotheses has non-zero
prior probability. Let’s assume H is one of them.
Renumbering if necessary, the others are A1,A2, . . . ,An, . . . ,
where div(Ai ) ≤ div(Aj) if i < j . Here div(Ai ) represents the
first place where Ai and H diverge; think of Ai as a sequence
with a 0 in the div(Ai )

th place and 1s up to it (what happens
beyond that is not relevant).



Bayesianism and Induction IV

▶ If as assumed H is the true hypothesis, the more evidence
comes in, the greater rational credence in H will be. Indeed,
that credence will tend to 1.

▶ Here’s how to ensure cr(H) ≥ 1
2 , for example. Suppose N is

such that
∞∑

i=N+1

cr(Ai ) ≤ cr(H). Some such N must exist.

▶ If we check the first div(AN) F s and find that they are all G s
(as we will if H is true) then we will have eliminated all the
hypotheses up to and including AN , leaving only those whose
joint prior probability is no greater than H’s prior probability.

▶ This argument can be formalised to show that H’s posterior
probability after this evidence has come in—i.e. after verifying
that F1,F2, . . . ,Fdiv(AN) are all G—must be ≥ 1

2 .

▶ A similar argument shows more generally that cr(H) tends to
1 as more of the F s are confirmed to be G .



Summary of the Bayesian Approach

▶ We have focused on the universal generalisation that all F s
are G s, where the F s are F0,F1, . . .Fn, . . . . This does duty for
a large class of inductive inferences.

▶ Each of the rival hypotheses claims that one out of all the
possible countably infinite sequences is the correct one. Each
sequence has a 1 or 0 at each place.

▶ We showed that under the assumptions stated earlier, as the
evidence comes in, one’s rational credence in H will tend to 1,
where H is the true hypothesis.

▶ Problem solved?



Objection 1: Infinite vs Finite I

▶ An obvious feature of the way we modelled induction is that
the F s are infinitely many.

▶ But in many cases, there are only finitely many F s. (In a more
probabilistic idiom: there are only finitely many events in the
σ-algebra over our outcome space.) This will be true of all
empirical cases if the universe is of finite temporal duration.

▶ Even if the universe is infinite and there are infinitely many
F s, we may make only finitely many predictions. At any rate,
it’s very unlikely that the human race or our successors (or
successors’ successors...) will live forever.



Objection 1: Infinite vs Finite II

▶ However, the convergence result essentially depends on us
making infinitely many predictions about F0,F1, . . . ,Fn, . . . .

▶ In the finite case where there are N F s, rational credence in
the true hypothesis H will increase as the evidence comes in
and some rival hypotheses with non-zero prior get knocked
out, assuming H too has non-zero prior probability. But the
argument gives us no reason to suppose rational credence in
H will tend to 1 as we observe more and more of the N F s, as
long as we haven’t see all of them yet.



Objection 1: Infinite vs Finite III

▶ Still, we might be interested in an in-principle solution to
Hume’s problem.

▶ If you like, we might be interested in what the credences of
ideal inductive agents who live forever (or an infinite
succession of these) should be.

▶ And in that case, we may ignore the rather inconvenient fact
of our finitude.



Objection 2: Zero Credences

▶ In the last lecture, we encountered the Principle of Regularity
which states that in a rational credence distribution, no
logically contingent proposition should receive unconditional
credence 0.

▶ And we also saw its implication that no more than countably
many events can have positive (i.e. non-zero) probability.

▶ The attempted Bayesian solution to the problem of induction
assumes that initial credence in the true hypothesis H is
positive. Otherwise, if it’s 0, it can never get off the ground.

▶ So it looks like we’ve simply begged the question against the
Humean sceptic by assuming that prior credence in H > 0.



First Response to the Zero-Credence Objection I

▶ A first response by the Bayesian: perhaps we can restrict the
set of hypotheses to a countable set. For example, for each
natural number n (including 0), let

Hn = the first divergence from the initial segment of 1s is at
the nth place

To which we can add the (in our example true) hypothesis H,
which we might call H∞: at no point is there divergence from
an initial segment of 1s, i.e. the sequence is 111....

▶ The resulting collection of hypotheses (H0,H1,H2, . . . ,Hn, . . .
plus H∞) is a partition: either the sequence is entirely made
up of 1s or some (possibly null) initial segment consists of 1s
followed by a 0, which occurs for the first time at the nth

place. And since the partition is countable, every hypothesis
can have a positive prior probability.



First Response to the Zero-Credence Objection II

▶ However, it doesn’t seem that coarse-graining the rival
hypotheses (so that each subsumes an uncountable number of
finer-grained ones) and then comparing them with the
fine-grained true one is acceptable. It treats the true
hypothesis asymmetrically.

▶ How do we know, prior to enquiry, which hypotheses to treat
individually and which to lump together?

▶ And what justifies this?



Another Response to the Zero-Credence Objection:
Infinitesimals I

▶ The Bayesian might amend their theory to include
infinitesimals. An infinitesimal i is a quantity smaller than any
positive number but larger than 0.

▶ Early modern mathematics employed infinitesimals in the
development of the calculus. The derivative of a function was
interpreted as the finite (non-infinitesimal) part of the

expression f (x+δx)−f (x)
δx , where δx represents an infinitesimally

small quantity.

▶ In the late 19th century, mathematics abandoned the use of
infinitesimals. They are not part of the real number line and
are proscribed in mainstream mathematical practice.

▶ However, they can be put on a rigorous footing, as Abraham
Robinson showed in the 1960s.



A Second Response to the Zero-Credence Objection:
Infinitesimals II

▶ The Bayesian might try to block the zero-credence objection
by arguing that all hypotheses may have non-zero probability
if some of them merely have infinitesimal values.

▶ Even if this can be done compatibly with Countable Addivity,
there seems to be a fatal problem for this objection.

▶ For if the true hypothesis H has infinitesimal prior probability
i then its posterior p(H|E ) = p(H)

p(E) will be infinitesimal

assuming p(E ) is real.

▶ Because infinitesimal × finite number = infinitesimal.

▶ So however (finitely) much evidence supports H, its
probability will remain infinitesimal if initially infinitesimal.

▶ In other words, even if the real numbers are extended, we
have to assume that H must have non-infinitesimal positive
prior probability. So we haven’t made any progress by
appealing to infinitesimals.



The Problem of the Priors I

▶ The Zero-Credence Ojection is really a species of the The
Problem of The Priors.

▶ An agent’s priors exert an ineliminable influence on their
posteriors. We can understand an agent’s posterior credences
as the result of updating credences hypothetically held prior to
acquiring any evidence on their total evidence as it comes in.
(Some call these hypothetical priors the agent’s epistemic
standards.) This is a conceptual tool, not a claim about the
agent’s actual psychological history.

▶ But where do the priors come from? And how do we justify
them?



The Problem of the Priors II
▶ The Bayesian argument we gave earlier that the rational

agent’s credence in the true hypothesis H tends to 1 as the
evidence comes in is an example of the washing out of priors.
As the evidence piles up, different agents’ priors will converge.

▶ But as we also saw earlier, a crucial assumption is that the
prior in H is non-zero.

▶ And we can also spin the argument another way.
▶ For any ϵ > 0 and finite N, there are rational agents with

positive prior credence in H who after seeing N cases of F s
being G s have posterior credence less than ϵ in H.

▶ N can be huge, e.g. much larger than any instances we will
collectively ever see of anything, and ϵ can be tiny.

▶ From this perspective, that two scientists agree in giving H
high credence seems to be just as much an accident of
biography as it is mandated by the evidence.

▶ Shared biology, or psychology, or the non-rational influence of
someone else’s priors, on your own, etc. don’t take us beyond
Hume’s own observations about ‘habit and custom’.



The Problem of the Priors III
▶ So far, we have assumed that Bayesians must be subjective to

some degree.

▶ As we saw in the previous lecture, objective Bayesianism
implies that only one set of priors is rational, whereas
subjective Bayesianism allows for latitude here.

▶ If objective Bayesianism can be justified, it would support the
objectivity of inductive reasoning, and, by extension, much of
scientific reasoning.

▶ But the prospects for objective Bayesianism are not
encouraging.

▶ What, for example, is the unique prior credence one should
give to all elephants being grey prior to having seen any
elephants? Or to having seen any animals?

▶ We saw in the first lecture that the classical theory of
probability’s reliance on the Principle of Indifference is
problematic. Objective Bayesianism looks like it must rely on
something like this principle.



Bayesianism and Circularity I

▶ Earlier, we sketched Russell’s approach to the problem of
induction. It seemed flatly circular (as Russell seemed to
appreciate—sort of).

▶ Does the Bayesian solution do better than Russell on the
circularity front?

▶ You could say: it’s an all-encompassing theory of how to
reason non-deductively.

▶ But Russell could say something similar about his principle of
induction: it’s the fundamental principle of non-deductive
reasoning.

▶ Bayesianism is obviously a more elaborate, intricate and
mathematically more precise theory than Russell’s simple, if
not simplistic, principle. But does any answer to the problem
of induction on its basis, however otherwise successful, beg
the question against the Hume sceptic?



Bayesianism’s Scope: Mathematics? I

▶ What if Bayesianism applied to mathematics and logic, i.e. to
what Hume called relations of ideas? If if it were a broader
principle of rationality whose application to empirical cases
was only a subset of its uses, perhaps it would be hard to
accuse it of begging the question?

▶ So does Bayesianism apply to mathematics?

▶ Despite appearances to the contrary, mathematics is
chock-full of uncertain reasoning.

▶ For example, mathematicians believe unproved conjectures to
various degrees, or choose a research problem based on the
chances it’s amenable to proof, and so on.

▶ None of this is to deny the plain fact that in mathematics a
result is only regarded as established if it’s been proved.



Bayesianism’s Scope: Mathematics? II

▶ Bayesianism, unfortunately, has trouble making sense of
uncertain reasoning in mathematics.

▶ This is because it assumes that rational agents are logically
omniscient. Normalisation implies that any logical truth must
be believed with credence 1. Which implies that agents
cannot give a theorem lower credence than the conjunction of
the axioms it follows from.

▶ And this general assumption is crucial to the applications of
Bayesianism outside mathematics.

▶ This is known as The Problem of Logical Omniscience for
Bayesianism.

▶ Even setting this aside, a contemporary Humean might
complain that the issue is not so much past vs future as
observed vs unobserved. So the fact that inductive reasoning
is used in mathematics does not address the Humean worry. It
simply extends its scope to mathematics as well.



Bayesianism and Circularity II
▶ So does Bayesianism beg the question against the Humean

sceptical challenge?

▶ That depends on how it’s justified.

▶ As a theory of rational credences, we’ve given one sort of
justification for it: Dutch Book Arguments. (And mentioned
the extrinsic justification behind the mathematical theory of
probability.)

▶ If the bets in a DBA were actual, real-life bets, there would be
a problem of circularity. For example, to accept any bet from
a bookie, you must form some beliefs about their future
actions, and that will involve an inductive inference. To
persuade a Humean sceptic to adjust their credences so as not
to avoid a Dutch Book in real life, you’ll have to convince
them that the bookie will pay out according to the terms of
the bet, for example, rather than just shower you with money
whatever the outcome—and this argument will have to infer
claims about the future from facts about the past.



Bayesianism and Circularity III
▶ What if we think of Dutch Books not as actual but

hypothetical? The Humean sceptic, let’s agree, can
contemplate imaginary scenarios just as well as anybody else.
(She can, for example, imagine a world in which inductive
inference beyond the year 2025 holds. What she questions is
the justification for thinking our world is like this.)

▶ She may agree that in the imaginary Dutch Book set-up,
given its assumptions, a subject should have probabilistically
coherent credences (i.e. credences that conform to the
probability axioms).

▶ But from that she need draw no conclusions about what
credences are rational in our non-imaginary/actual situation.

▶ ‘If it were the case that X then I should ϕ; so I should ϕ’ is
surely an invalid argument. We need some reason for applying
morals about a counterfactual case to an actual one.

▶ The question is whether Bayesianism can be justified in a
different way to avoid this.



Summary

We discussed four problems for the Bayesian approach to Hume’s
problem of induction. (The second is an instance of the third.)

▶ Finite vs Infinite

▶ Zero Credence

▶ The Problem of Priors

▶ How to Justify Bayesianism
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